某辦公室有5位教師,只有3臺(tái)電腦供他們使用,教師是否使用電腦是相互獨(dú)立的.
(1)若上午某一時(shí)段A、B、C三位教師需要使用電腦的概率分別是、,求這一時(shí)段A、B、C三位教師中恰有2位教師使用電腦的概率;
(2)若下午某一時(shí)段每位教師需要使用電腦的概率都是,求在這一時(shí)段該辦公室電腦使用的平均臺(tái)數(shù)和無(wú)法滿(mǎn)足需求的概率.
【答案】分析:(1)由題意知本題是一個(gè)相互獨(dú)立事件同時(shí)發(fā)生的概率,各位教師是否使用電腦是相互獨(dú)立的,甲、乙、丙三位教師中恰有2位使用電腦包括三種情況,這三種情況是互斥的,根據(jù)相互獨(dú)立事件和互斥事件的概率公式得到結(jié)果.
(2)電腦數(shù)無(wú)法滿(mǎn)足需求,即指有4位以上(包括4位)教師同時(shí)需要使用電腦,有4位教師同時(shí)需要使用電腦的事件和有5位教師同時(shí)需要使用電腦的事件,是互斥的,而每一種情況滿(mǎn)足獨(dú)立重復(fù)試驗(yàn),代入公式得到結(jié)果.
解答:解:(1)甲、乙、丙教師使用電腦的事件分別記為A、B、C,
因?yàn)楦魑唤處熓欠袷褂秒娔X是相互獨(dú)立的,
∴甲、乙、丙三位教師中恰有2位使用電腦的概率是:
(2)電腦數(shù)無(wú)法滿(mǎn)足需求,即指有4位以上(包括4位)教師同時(shí)需要使用電腦,
記有4位教師同時(shí)需要使用電腦的事件為M,
有5位教師同時(shí)需要使用電腦的事件為N,

∴所求的概率是P=P(M)+P(N)=

即平均使用臺(tái)數(shù)為臺(tái).
點(diǎn)評(píng):考查相互獨(dú)立事件同時(shí)發(fā)生的概率,考查互斥事件的概率,考查獨(dú)立重復(fù)試驗(yàn),考查運(yùn)用概率知識(shí)解決實(shí)際問(wèn)題的能力,解題過(guò)程中判斷概率的類(lèi)型是難點(diǎn)也是重點(diǎn),應(yīng)注意解題的格式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某辦公室有5位教師,只有3臺(tái)電腦供他們使用,教師是否使用電腦是相互獨(dú)立的.
(1)若上午某一時(shí)段A、B、C三位教師需要使用電腦的概率分別是
1
4
、
2
3
2
5
,求這一時(shí)段A、B、C三位教師中恰有2位教師使用電腦的概率;
(2)若下午某一時(shí)段每位教師需要使用電腦的概率都是
1
3
,求在這一時(shí)段該辦公室電腦使用的平均臺(tái)數(shù)和無(wú)法滿(mǎn)足需求的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年龍巖一中沖刺文)(12分)

某辦公室有5位教師,只有3臺(tái)電腦供他們使用,教師是否使用電腦是相互獨(dú)立的。

(1)若上午某一時(shí)段A、B、C三位教師需要使用電腦的概率分別是、、,求這一時(shí)段A、B、C三位教師中恰有2位教師使用電腦的概率;

(2)若下午某一時(shí)段每位教師需要使用電腦的概率都是,求這一時(shí)段該辦公室電腦數(shù)無(wú)法滿(mǎn)足需求的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某辦公室有5位教師,只有3臺(tái)電腦供他們使用,教師是否使用電腦是相互獨(dú)立的.
(1)若上午某一時(shí)段A、B、C三位教師需要使用電腦的概率分別是
1
4
2
3
、
2
5
,求這一時(shí)段A、B、C三位教師中恰有2位教師使用電腦的概率;
(2)若下午某一時(shí)段每位教師需要使用電腦的概率都是
1
3
,求在這一時(shí)段該辦公室電腦使用的平均臺(tái)數(shù)和無(wú)法滿(mǎn)足需求的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某辦公室有5位教師,只有3臺(tái)電腦供他們使用,每位教師是否使用電腦是相互獨(dú)立的.

(Ⅰ)若上午某一時(shí)段A、B、C三位教師需要使用電腦的概率分別是、,求這一時(shí)段A、B、C三位教師中恰有2位教師使用電腦的概率;

(Ⅱ)若下午某一時(shí)段每位教師需要使用電腦的概率都是,求這一時(shí)段該辦公室電腦數(shù)無(wú)法滿(mǎn)足需求的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案