6.已知a,b,c分別是△ABC內(nèi)角A,B,C的對(duì)邊,sin2B=sinAsinC.
(1)若$a=\sqrt{2}b$,求cosA;
(2)若B=60°,且$a=\sqrt{3}$,求△ABC的面積.

分析 (1)根據(jù)sin2B=sinAsinC.利用正弦定理可得b2=ac,$a=\sqrt{2}b$,根據(jù)余弦定理可求cosA;
(2)由b2=ac,B=60°,且$a=\sqrt{3}$,余弦定理求出c的值,即可求△ABC的面積.

解答 解:(1)∵sin2B=sinAsinC.
由正弦定理可得b2=ac,
$a=\sqrt{2}b$,
∴b=$\sqrt{2}c$,即a=2c.
余弦定理,cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$-\frac{\sqrt{2}}{4}$.
(2)由題意,b2=ac,B=60°,且$a=\sqrt{3}$,
余弦定理:cosB=$\frac{1}{2}$=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$,
∴${c}^{2}-2\sqrt{3}c+3=0$,
解得:c=$\sqrt{3}$.
∴△ABC的面積=$\frac{1}{2}$acsinB=$\frac{1}{2}×\sqrt{3}×\sqrt{3}×\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{4}$.

點(diǎn)評(píng) 本題考查了正余弦定理的運(yùn)用和計(jì)算能力.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.從1000人中按系統(tǒng)抽樣的方法抽取20人,那么每個(gè)人被選中的概率是(  )
A.都相等且等于$\frac{1}{50}$B.都相等且等于$\frac{1}{20}$C.不全相等D.均不相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.2015年12月16日“第三屆世界互聯(lián)網(wǎng)大會(huì)”在中國烏鎮(zhèn)舉辦,為了保護(hù)與會(huì)者的安全,將5個(gè)安保小組全部安排到指定三個(gè)區(qū)域內(nèi)工作,且這三個(gè)區(qū)域每個(gè)區(qū)域至少有一個(gè)安保小組.則這樣的安排的方法共有(  )
A.96種B.100種C.124種D.150種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知|$\overrightarrow{a}$|=|$\overrightarrow$|=2,向量$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,則$\overrightarrow a•\overrightarrow b$等于( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.將十進(jìn)制數(shù)100轉(zhuǎn)換成二進(jìn)制數(shù)所得結(jié)果為1100100(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某化工企業(yè)2017年底投入100萬元購入一套污水處理設(shè)備.該設(shè)備每年的運(yùn)轉(zhuǎn)費(fèi)用是0.5萬元,此外每年都要花費(fèi)一定的維護(hù)費(fèi),第一年的維護(hù)費(fèi)為2萬元,由于設(shè)備老化,以后每年的維護(hù)費(fèi)都比上一年增加2萬元.設(shè)該企業(yè)使用該設(shè)備x年的年平均污水處理費(fèi)用為y(單元:萬元).
(注:年平均污水處理費(fèi)用=年污水處理總的費(fèi)用÷總的年數(shù))
(1)用x表示y;
(2)當(dāng)該企業(yè)的年平均污水處理費(fèi)用最低時(shí),企業(yè)需重新更換新的污水處理設(shè)備.求該企業(yè)幾年后需要重新更換新的污水處理設(shè)備.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在梯形ABCD中,AB∥CD,$∠BCD=\frac{2π}{3}$,四邊形ACFE為矩形,且CF⊥平面ABCD,AD=CD=BC=CF=1.
(1)求證:EF⊥平面BCF;
(2)點(diǎn)M在線段EF(含端點(diǎn))上運(yùn)動(dòng),當(dāng)點(diǎn)M在什么位置時(shí),平面MAB與平面FCB所成銳二面角最大,并求此時(shí)二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在△ABC中,若a:b:c=7:8:13,則∠C=120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若中心在原點(diǎn)、焦點(diǎn)在y軸上的雙曲線的一條漸近線方程為x+3y=0,則此雙曲線的離心率為$\sqrt{10}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案