【題目】點A、B分別是橢圓長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓上,且位于軸上方,.
(1)求點P的坐標;
(2)設M是橢圓長軸AB上的一點,M到直線AP的距離等于,求橢圓上的點到點M的距離的最小值.
【答案】(1)(,).(2)
【解析】
(1)根據條件列關于P點坐標得方程組,解得結果,(2)先根據點到直線距離公式結合條件解得點M坐標,再建立的函數(shù)解析式,最后根據二次函數(shù)性質求最小值.
解:(1)由已知可得點A(-6,0),F(4,0)
設點P(,),則={+6,},={-4,},
由已知可得
則2+9-18=0,解得=或=-6.
由于>0,只能=,于是=.
∴點P的坐標是(,).
(2)直線AP的方程是-+6=0.
設點M(,0),則M到直線AP的距離是.
于是=,又-6≤≤6,解得=2.
橢圓上的點(,)到點M的距離為,
則,
由于-6≤≤6, ∴當=時,取得最小值.
科目:高中數(shù)學 來源: 題型:
【題目】為考察某動物疫苗預防某種疾病的效果,現(xiàn)對200只動物進行調研,并得到如下數(shù)據:
未發(fā)病 | 發(fā)病 | 合計 | |
未注射疫苗 | 20 | 60 | 80 |
注射疫苗 | 80 | 40 | 120 |
合計 | 100 | 100 | 200 |
(附:)
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
則下列說法正確的:( )
A.至少有99.9%的把握認為“發(fā)病與沒接種疫苗有關”
B.至多有99%的把握認為“發(fā)病與沒接種疫苗有關”
C.至多有99.9%的把握認為“發(fā)病與沒接種疫苗有關”
D.“發(fā)病與沒接種疫苗有關”的錯誤率至少有0.01%
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有個零件,已知其中有個正品、個次品.現(xiàn)隨機地逐一檢查,則恰好在檢查第個零件查出了所有次品的概率為( ).
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】新高考方案的實施,學生對物理學科的選擇成了焦點話題. 某學校為了了解該校學生的物理成績,從,兩個班分別隨機調查了40名學生,根據學生的某次物理成績,得到班學生物理成績的頻率分布直方圖和班學生物理成績的頻數(shù)分布條形圖.
(Ⅰ)估計班學生物理成績的眾數(shù)、中位數(shù)(精確到)、平均數(shù)(各組區(qū)間內的數(shù)據以該組區(qū)間的中點值為代表);
(Ⅱ)填寫列聯(lián)表,并判斷是否有的把握認為物理成績與班級有關?
物理成績的學生數(shù) | 物理成績的學生數(shù) | 合計 | |
班 | |||
班 | |||
合計 |
附:列聯(lián)表隨機變量;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓()的左右焦點分別為,左右頂點分別為,過右焦點且垂直于長軸的直線交橢圓于兩點,,的周長為.過點作直線交橢圓于第一象限的點,直線交橢圓于另一點,直線與直線交于點;
(1)求橢圓的標準方程;
(2)若的面積為,求直線的方程;
(3)證明:點在定直線上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知中心在原點的雙曲線的右焦點為,右頂點為.
(1)求雙曲線的方程;
(2)若直線與雙曲線恒有兩個不同的交點和,且(其中為坐標原點),求實數(shù)取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一個12位的正整數(shù)可以被37整除,且只包含數(shù)碼,求這個12為數(shù)的各位數(shù)字之和的所有可能值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓中心在原點,焦點在坐標軸上,直線與橢圓在第一象限內的交點是,點在軸上的射影恰好是橢圓的右焦點,橢圓另一個焦點是,且.
(1)求橢圓的方程;
(2)設過點的直線與交于點(不在軸上),垂直于的直線與交于點,與軸交于點.若,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學舉行“新冠肺炎”防控知識閉卷考試比賽,總分獲得一等獎、二等獎、三等獎的代表隊人數(shù)情況如表,其中一等獎代表隊比三等獎代表隊多10人.該校政教處為使頒獎儀式有序進行,氣氛活躍,在頒獎過程中穿插抽獎活動.并用分層抽樣的方法從三個代表隊中共抽取16人在前排就坐,其中二等獎代表隊有5人(同隊內男女生仍采用分層抽樣)
名次 性別 | 一等獎 代表隊 | 二等獎 代表隊 | 三等獎 代表隊 |
男生 | ? | 30 | ◎ |
女生 | 30 | 20 | 30 |
(1)從前排就坐的一等獎代表隊中隨機抽取3人上臺領獎,用X表示女生上臺領獎的人數(shù),求X的分布列和數(shù)學期望E(X).
(2)抽獎活動中,代表隊員通過操作按鍵,使電腦自動產生[﹣2,2]內的兩個均勻隨機數(shù)x,y,隨后電腦自動運行如圖所示的程序框圖的相應程序.若電腦顯示“中獎”,則代表隊員獲相應獎品;若電腦顯示“謝謝”,則不中獎.求代表隊隊員獲得獎品的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com