【題目】已知一個12位的正整數(shù)可以被37整除,且只包含數(shù)碼,求這個12為數(shù)的各位數(shù)字之和的所有可能值.

【答案】

【解析】

設(shè)滿足

,且,

,取,

,其中,,且,

,,

設(shè),

,

,知 ,

易知.故對任意,

.

從而,中之一模37同余.

12位數(shù)知都小于等于4.

,

,且,

,

,

,,

,,從而,.

(1)當(dāng)時,,

下面構(gòu)造數(shù)滿足條件,

,

,滿足條件,其中,為高斯函數(shù).

(2)當(dāng)時,,

,則,

由下表知

其中, 表示的取值.

均大于4,矛盾,

,

由表1,但,均大于4,矛盾.

由對稱性,,

(3)類似(2)知,,

(4)當(dāng)時,,若

,

由表1

,

,取,

滿足條件,.

由對稱性,時,取滿足條件,.

(5)當(dāng)時,類似(4)知,

,取,

滿足條件,.

由對稱性,時,取滿足條件,,

綜上,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)是定義在上的不恒為零的函數(shù),對于任意實數(shù)滿足: ,, 考查下列結(jié)論:① ;②為奇函數(shù);③數(shù)列為等差數(shù)列;④數(shù)列為等比數(shù)列.

以上結(jié)論正確的是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段、交于點,在的延長線上任取一點,得凸四邊形,求證:、的外接圓三圓共點。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】AB分別是橢圓長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓上,且位于軸上方,.

1)求點P的坐標(biāo);

2)設(shè)M是橢圓長軸AB上的一點,M到直線AP的距離等于,求橢圓上的點到點M的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新高考方案的實施,學(xué)生對物理學(xué)科的選擇成了焦點話題. 某學(xué)校為了了解該校學(xué)生的物理成績,從,兩個班分別隨機調(diào)查了40名學(xué)生,根據(jù)學(xué)生的某次物理成績,得到班學(xué)生物理成績的頻率分布直方圖和班學(xué)生物理成績的頻數(shù)分布條形圖.

(Ⅰ)估計班學(xué)生物理成績的眾數(shù)、中位數(shù)(精確到)、平均數(shù)(各組區(qū)間內(nèi)的數(shù)據(jù)以該組區(qū)間的中點值為代表);

(Ⅱ)填寫列聯(lián)表,并判斷是否有的把握認(rèn)為物理成績與班級有關(guān)?

物理成績的學(xué)生數(shù)

物理成績的學(xué)生數(shù)

合計

合計

附:列聯(lián)表隨機變量;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓左頂點為M,上頂點為N,直線MN的斜率為

)求橢圓的離心率;

)直線l與橢圓交于AC兩點,與y軸交于點P,以線段AC為對角線作正方形ABCD,若

)求橢圓方程;

)若點E在直線MN上,且滿足,求使得最長時,直線AC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)橢圓的左、右焦點分別為,點在橢圓上,的面積為

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)圓心在軸上的圓與橢圓在軸的上方有兩個交點,且圓在這兩個交點處的兩條切線相互垂直并分別過不同的焦點,求圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年年初,新冠肺炎疫情防控工作全面有序展開.某社區(qū)對居民疫情防控知識進(jìn)行了網(wǎng)上調(diào)研,調(diào)研成績?nèi)慷荚?/span>分到分之間.現(xiàn)從中隨機選取位居民的調(diào)研成績進(jìn)行統(tǒng)計,繪制了如圖所示的頻率分布直方圖.

的值,并估計這位居民調(diào)研成績的中位數(shù);

在成績?yōu)?/span>,的兩組居民中,用分層抽樣的方法抽取位居民,再從位居民中隨機抽取位進(jìn)行詳談.位居民的調(diào)研成績在的人數(shù),求隨機變量的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過點的直線的參數(shù)方程為為參數(shù)),直線與曲線相交于兩點.

)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

)若,求的值.

查看答案和解析>>

同步練習(xí)冊答案