已知橢圓的右焦點為F,A為短軸的一個端點,且,的面積為1(其中為坐標原點).
(1)求橢圓的方程;
(2)若C、D分別是橢圓長軸的左、右端點,動點M滿足,連結(jié)CM,交橢圓于點,證明:為定值;
(3)在(2)的條件下,試問軸上是否存在異于點C的定點Q,使得以MP為直徑的圓恒過直線DPMQ的交點,若存在,求出點Q的坐標;若不存在,說明理由.
(1).(2)見解析;(3)存在,使得以為直徑的圓恒過直線、的交點.

試題分析:(1)由已知:,可得,,可得橢圓方程為.
(2)由(1)知,設(shè).根據(jù).
消去,整理得:,
應(yīng)用韋達定理得
利用平面向量的坐標運算即得(定值).
(3)以為直徑的圓恒過的交點,
,建立Q坐標的方程.
試題解析:(1)由已知:,,,
所以橢圓方程為.          4分
(2)由(1)知,.
由題意可設(shè).

消去,整理得:,

.,

(定值).    9分
(3)設(shè).
若以為直徑的圓恒過的交點,
.
由(2)可知:,
,
恒成立,
∴存在,使得以為直徑的圓恒過直線的交點.          13分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓ab0)的離心率為,且過點().
(1)求橢圓E的方程;
(2)設(shè)直線l:y=kx+t與圓(1<R<2)相切于點A,且l與橢圓E只有一個公共點B.
①求證:;
②當R為何值時,取得最大值?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓)的右焦點,右頂點,且

(1)求橢圓的標準方程;
(2)若動直線與橢圓有且只有一個交點,且與直線交于點,問:是否存在一個定點,使得.若存在,求出點坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓C:的左頂點為A,M是橢圓C上異于點A的任意一點,點P與點A關(guān)于點M對稱.

(1)若點P的坐標,求m的值;
(2)若橢圓C上存在點M,使得,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)橢圓的左、右焦點分別、,點是橢圓短軸的一個端點,且焦距為6,的周長為16.
(I)求橢圓的方程;
(2)求過點且斜率為的直線被橢圓所截的線段的中點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過橢圓內(nèi)一點R(1,0)作動弦MN,則弦MN中點P的軌跡是(  )
A.圓B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的左焦點為與過原點的直線相交于兩點,連接,若,則橢圓的離心率
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知離心率為的雙曲線和離心率為的橢圓有相同的焦點、是兩曲線的一個公共點,若,則等于(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

給定橢圓C:=1(a>b>0),稱圓心在原點O、半徑是的圓為橢圓C的“準圓”.已知橢圓C的一個焦點為F(,0),其短軸的一個端點到點F的距離為.
(1)求橢圓C和其“準圓”的方程;
(2)若點A是橢圓C的“準圓”與x軸正半軸的交點,B、D是橢圓C上的兩相異點,且BD⊥x軸,求·的取值范圍;
(3)在橢圓C的“準圓”上任取一點P,過點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,試判斷l(xiāng)1,l2是否垂直?并說明理由.

查看答案和解析>>

同步練習冊答案