已知橢圓的左焦點(diǎn)為與過(guò)原點(diǎn)的直線相交于兩點(diǎn),連接,若,則橢圓的離心率
A.B.C.D.
A

試題分析:由已知條件,利用余弦定理求出|AF|,設(shè)F′為橢圓的右焦點(diǎn),連接BF′,AF′.根據(jù)對(duì)稱(chēng)性可得四邊形AFBF′是矩形,由此能求出離心率e.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率,長(zhǎng)軸的左右端點(diǎn)分別為,
(1)求橢圓的方程;
(2)設(shè)動(dòng)直線與曲線有且只有一個(gè)公共點(diǎn),且與直線相交于點(diǎn).問(wèn)在軸上是否存在定點(diǎn),使得以為直徑的圓恒過(guò)定點(diǎn),若存在,求出點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的右焦點(diǎn)為FA為短軸的一個(gè)端點(diǎn),且的面積為1(其中為坐標(biāo)原點(diǎn)).
(1)求橢圓的方程;
(2)若CD分別是橢圓長(zhǎng)軸的左、右端點(diǎn),動(dòng)點(diǎn)M滿足,連結(jié)CM,交橢圓于點(diǎn),證明:為定值;
(3)在(2)的條件下,試問(wèn)軸上是否存在異于點(diǎn)C的定點(diǎn)Q,使得以MP為直徑的圓恒過(guò)直線DP、MQ的交點(diǎn),若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,其長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的和等于6.

(1)求橢圓的方程;
(2)如圖,設(shè)橢圓的上、下頂點(diǎn)分別為,是橢圓上異于的任意一點(diǎn),直線分別交軸于點(diǎn),若直線與過(guò)點(diǎn)的圓相切,切點(diǎn)為.證明:線段的長(zhǎng)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知(4,2)是直線l被橢圓所截得的線段的中點(diǎn),則l的方程是(    )
A.x+2y+8=0
B.x+2y-8=0
C.x-2y-8=0
D.x-2y+8=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,且長(zhǎng)軸長(zhǎng)為12,離心率為,則橢圓的方程是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

與橢圓有公共焦點(diǎn),且離心率的雙曲線方程是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知定點(diǎn)A(-4,0)、B(4,0),動(dòng)點(diǎn)P與A、B連線的斜率之積為-.
(1)求點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn)P的軌跡與y軸負(fù)半軸交于點(diǎn)C.半徑為r的圓M的圓心M在線段AC的垂直平分線上,且在y軸右側(cè),圓M被y軸截得的弦長(zhǎng)為r.
(ⅰ)求圓M的方程;
(ⅱ)當(dāng)r變化時(shí),是否存在定直線l與動(dòng)圓M均相切?如果存在,求出定直線l的方程;如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓的方程C:),若橢圓的離心率,則的取值范圍是.

查看答案和解析>>

同步練習(xí)冊(cè)答案