設x1,x2是函數(shù)的兩個極值點,且|x1-x2|=2.
(Ⅰ)證明:0<a≤1;
(Ⅱ)證明:
【答案】分析:(I)對函數(shù)求導可得,f′(x)=ax2+bx-a2,由題意可得x1,x2是方程的兩根,根據(jù)方程的根與系數(shù)的關系可得x1+x2,x1•x2,而,代入可求
(II)由(I)可得b2=4a2-4a3,構(gòu)造函數(shù)g(a)=4a2-4a3,利用導數(shù)知識求函數(shù)g(a)的單調(diào)區(qū)間及最值,而b2≤g(a)max,即可.
解答:解:(Ⅰ)對f(x)求導可得f'(x)=ax2+bx-a2(a>0).(2分)
因為x1,x2是f(x)的兩個極值點,所以x1,x2是方程f'(x)=0的兩個實根.
于是,

即b2=4a2-4a3.(4分)
由b2≥0得4a2-4a3≥0,解得a≤1.a(chǎn)>0,
所以0<a≤1得證.(6分)
(Ⅱ)由(Ⅰ)知b2=4a2-4a3,設g(a)=4a2-4a3,
則g'(a)=8a-12a2=4a(2-3a).(8分)
由g'(a)>0;g'(a)<0.(10分)
故g(a)在時取得最大值
,
所以.(13分)
點評:本題是函數(shù)的導數(shù)的簡單運用,熟練運用導數(shù)的知識解決問題,要求考生熟練掌握基本知識,靈活轉(zhuǎn)化問題,還要具備一定的邏輯推理的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax2+bx+c(a>0)且f(1)=-
a2

(1)求證:函數(shù)f(x)有兩個零點;
(2)設x1,x2是函數(shù)的兩個零點,求|x1-x2|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年四川省成都市高三上學期九月診斷性考試理科數(shù)學卷 題型:解答題

(本題滿分14分)

x1,x2是函數(shù)的兩個極值點,且

(1)   用a表示,并求出a的取值范圍.

(2)   證明: .

(3)   若函數(shù) ,證明:當x1<0時, .

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設x1,x2是函數(shù)數(shù)學公式的兩個極值點,且|x1|+|x2|=2.
(1)用a表示b2,并求出a的取值范圍.
(2)證明:數(shù)學公式
(3)若函數(shù)h(x)=f′(x)-2a(x-x1),證明:當x1<x<2且x1<0時,|h(x)|≤4a.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年甘肅省張掖二中高三(上)10月月考數(shù)學試卷(文科)(解析版) 題型:解答題

設x1,x2是函數(shù)的兩個極值點,且|x1-x2|=2.
(Ⅰ)證明:0<a≤1;
(Ⅱ)證明:

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年浙江省溫州市中學高二(下)期中數(shù)學試卷(理科)(解析版) 題型:解答題

設x1,x2是函數(shù)的兩個極值點,且|x1-x2|=2.
(Ⅰ)證明:0<a≤1;
(Ⅱ)證明:

查看答案和解析>>

同步練習冊答案