設(shè)F1、F2分別為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),|F1F2|=2c以O(shè)為圓心,以c為半徑的圓與雙曲線的四個(gè)交點(diǎn)及F1、F2恰好構(gòu)成正六邊形的六個(gè)頂點(diǎn).則雙曲線的離心率e=
 
分析:由已知中,以O(shè)為圓心,以c為半徑的圓與雙曲線的四個(gè)交點(diǎn)及F1、F2恰好構(gòu)成正六邊形的六個(gè)頂點(diǎn),我們易求出該正六邊形的邊長(zhǎng)及不相鄰兩個(gè)頂點(diǎn)之間的距離,進(jìn)而求出2a的值,代入離心率表達(dá)式e=
c
a
即可得到答案.
解答:解:∵以c為半徑的圓與雙曲線的四個(gè)交點(diǎn)及F1、F2恰好構(gòu)成正六邊形的六個(gè)頂點(diǎn)
∴該正六邊形的邊長(zhǎng)為c,
則2a=(
3
-1)c
則雙曲線的離心率e=
c
a
=
2c
2a
=
2c
(
3
-1)c
=
3
+1

故答案為:
3
+1
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是雙曲線的簡(jiǎn)單性質(zhì),其中根據(jù)已知條件,計(jì)算出a值,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1,F(xiàn)2分別為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn),以線段F1F2為直徑的圓交雙曲線左支于A,B兩點(diǎn),且∠AF1B=120°,若雙曲線的離心率介于整數(shù)k與k+1之間,則k=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•石家莊一模)設(shè)F1,F(xiàn)2分別為雙曲線
x2
a2
-
y2
b2
= 1
的左、右焦點(diǎn),點(diǎn)P在雙曲線的右支上,且|PF2|=|1FF2|,F(xiàn)2到直線PF1的距離等于雙曲線的實(shí)軸長(zhǎng),則該雙曲線的離心率為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知A、B為橢圓
x2
a2
+
y2
b2
=1(a>b>0)
和雙曲線
x2
a2
-
y2
b2
=1
的公共頂點(diǎn),P、Q分別為雙曲線和橢圓上不同于A、B的動(dòng)點(diǎn),且
OP
OQ
(λ∈R,λ>1)
.設(shè)AP、BP、AQ、BQ的斜率分別為k1、k2、k3、k4
(1)求證:k1k2=
b2
a2
;
(2)求k1+k2+k3+k4的值;
(3)設(shè)F1、F2分別為雙曲線和橢圓的右焦點(diǎn),若PF1∥QF2,求k12+k22+k32+k42的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•重慶一模)設(shè)F1、F2分別為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn).若在雙曲線右支上存在點(diǎn)P,滿足|PF2|=|F1F2|,且點(diǎn)P的橫坐標(biāo)為
5
4
c(c為半焦距),則該雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1、F2分別為雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn),A為雙曲線的左頂點(diǎn),以F1F2為直徑的圓交雙曲線某條漸過(guò)線于M,N兩點(diǎn),且滿足∠MAN=120°,則該雙曲線的離心率為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案