17.設等差數(shù)列{an}的公差d不為0,若a5=a12,且a1與a21的等比中項為a5,則a1=4.

分析 運用等比數(shù)列的中項的性質(zhì)和等差數(shù)列的通項公式,可得首項和公差的方程,解方程即可得到所求首項.

解答 解:由a1與a21的等比中項為a5
可得${a_1}{a_{21}}=a_5^2$,
即為a1(a1+20d)=(a1+4d)2,
得$3{a_1}d=4{d^2}$,因為d≠0,
所以3a1=4d,
由${a_5}=a_1^2$,
得$a_1^2={a_1}+4d=4{a_1}$,
因為a1≠0,所以a1=4.
故答案為:4.

點評 本題考查等差數(shù)列的通項公式的運用,以及等比數(shù)列的中項的性質(zhì),考查方程思想和運算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

7.若{log2an}是首項為1,公差為2的等差數(shù)列,則數(shù)列{nan}的前n項和為$\frac{2+(6n-2)•{4}^{n}}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知數(shù)列{an}滿足:a1為正整數(shù),an+1=$\left\{{\begin{array}{l}{\frac{a_n}{2},\;{a_n}為偶數(shù)}\\{3{a_n}+1,{a_n}為奇數(shù)}\end{array}}$,如果a1=5,則a1+a2+a3的值為( 。
A.29B.30C.31D.32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知f(x)=sinx-cosx-ax,其中a∈R.
(1)若f(x)在x=0處取得極值,求實數(shù)a的值.
(2)若f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上單調(diào)遞增,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知橢圓C的中心在原點,焦點在x軸上,離心率$e<\frac{{\sqrt{2}}}{2}$.以兩個焦點和短軸的兩個端點為頂點的四邊形的周長為8,面積為$2\sqrt{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若點P(x0,y0)為橢圓C上一點,直線l的方程為3x0x+4y0y-12=0,求證:直線l與橢圓C有且只有一個交點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.將函數(shù)y=sinxcosx的圖象向右平移m(m>0)個單位,所得曲線的對稱軸與函數(shù)$y=cos({ωx+\frac{π}{3}})({ω>0})$的圖象的對稱軸重合,則實數(shù)m的最小值為$\frac{π}{12}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=ex-e-x
(Ⅰ)求曲線y=f(x)在點(0,f(0))處的切線方程;
(Ⅱ)當x∈(0,1)時,不等式ex-e-x>k(x+$\frac{{x}^{3}}{6}$)恒成立,求實數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知△ABC內(nèi)角A,B,C的對邊分別是a,b,c,且滿足sin2B+sin2C-sin2A=sinBsinC
(1)求角A的大;
(2)已知函數(shù)f(x)=sin(ωx+A),ω>0的最小正周期為π,求f(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.不等式-6x2-x+2<0的解集是$({-∞,-\frac{2}{3}})∪({\frac{1}{2},+∞})$.

查看答案和解析>>

同步練習冊答案