已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長軸長為,且點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)設(shè)是橢圓長軸上的一個(gè)動點(diǎn),過作方向向量的直線交橢圓于、兩點(diǎn),求證:為定值.
(1);(2)證明見解析.
解析試題分析:(1)已知橢圓的長軸長,就是已知,那么在橢圓的標(biāo)準(zhǔn)方程中還有一個(gè)參數(shù),正好橢圓過點(diǎn),把這個(gè)點(diǎn)的代入橢圓標(biāo)準(zhǔn)方程可求出,得橢圓方程;(2)這是直線與橢圓相交問題,考查同學(xué)們的計(jì)算能力,給定了直線的方向向量,就是給出了直線的斜率,只要設(shè)動點(diǎn)的坐標(biāo)為,就能寫出直線的方程,把它與橢圓方程聯(lián)立方程組,可求出兩點(diǎn)的坐標(biāo),從而求出的值,看它與有沒有關(guān)系(是不是常數(shù)),當(dāng)然在求時(shí),不一定要把兩點(diǎn)的坐標(biāo)直接求出(如直接求出,對下面的計(jì)算沒有幫助),而是采取設(shè)而不求的思想,即設(shè),然后求出,,而再把用,表示出來然后代入計(jì)算,可使計(jì)算過程簡化.
試題解析:(1) 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/32/4/wkb142.png" style="vertical-align:middle;" />的焦點(diǎn)在軸上且長軸為,
故可設(shè)橢圓的方程為(), (1分)
因?yàn)辄c(diǎn)在橢圓上,所以, (2分)
解得, (1分)
所以,橢圓的方程為. (2分)
(2)設(shè)(),由已知,直線的方程是, (1分)
由 (*) (2分)
設(shè),,則、是方程(*)的兩個(gè)根,
所以有,, (1分)
所以,
(定值). (3分)
所以,為定值. (1分)
(寫到倒數(shù)第2行,最后1分可不扣)
考點(diǎn):(1)橢圓的標(biāo)準(zhǔn)方程;(2)直線與橢圓相交問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:經(jīng)過如下五個(gè)點(diǎn)中的三個(gè)點(diǎn):,,,,.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點(diǎn)為橢圓的左頂點(diǎn),為橢圓上不同于點(diǎn)的兩點(diǎn),若原點(diǎn)在的外部,且為直角三角形,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
給定橢圓,稱圓心在坐標(biāo)原點(diǎn)O,半徑為的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個(gè)焦點(diǎn)分別是.
(1)若橢圓C上一動點(diǎn)滿足,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過點(diǎn)作直線l與橢圓C只有一個(gè)交點(diǎn),且截橢圓C的“伴隨圓”所得弦長為,求P點(diǎn)的坐標(biāo);
(3)已知,是否存在a,b,使橢圓C的“伴隨圓”上的點(diǎn)到過兩點(diǎn)的直線的最短距離.若存在,求出a,b的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的左、右焦點(diǎn)分別為,橢圓的離心率為,且橢圓經(jīng)過點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)線段是橢圓過點(diǎn)的弦,且,求內(nèi)切圓面積最大時(shí)實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知的兩頂點(diǎn)坐標(biāo),,圓是的內(nèi)切圓,在邊,,上的切點(diǎn)分別為,(從圓外一點(diǎn)到圓的兩條切線段長相等),動點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)設(shè)直線與曲線的另一交點(diǎn)為,當(dāng)點(diǎn)在以線段為直徑的圓上時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知?jiǎng)訄A過定點(diǎn)P(1,0),且與定直線l:x=-1相切,點(diǎn)C在l上.
(1)求動圓圓心的軌跡M的方程;
(2)設(shè)過點(diǎn)P,且斜率為-的直線與曲線M相交于A、B兩點(diǎn). 問:△ABC能否為正三角形?若能,求點(diǎn)C的坐標(biāo);若不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義:對于兩個(gè)雙曲線,,若的實(shí)軸是的虛軸,的虛軸是的實(shí)軸,則稱,為共軛雙曲線.現(xiàn)給出雙曲線和雙曲線,其離心率分別為.
(1)寫出的漸近線方程(不用證明);
(2)試判斷雙曲線和雙曲線是否為共軛雙曲線?請加以證明.
(3)求值:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中,點(diǎn)A、B的坐標(biāo)分別為,點(diǎn)C在x軸上方。
(1)若點(diǎn)C坐標(biāo)為,求以A、B為焦點(diǎn)且經(jīng)過點(diǎn)C的橢圓的方程;
(2)過點(diǎn)P(m,0)作傾角為的直線交(1)中曲線于M、N兩點(diǎn),若點(diǎn)Q(1,0)恰在以線段MN為直徑的圓上,求實(shí)數(shù)m的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,長軸長為,直線交橢圓于不同的兩點(diǎn).
(1)求橢圓的方程;
(2)求的取值范圍;
(3)若直線不經(jīng)過橢圓上的點(diǎn),求證:直線的斜率互為相反數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com