20.已知函數(shù)y=f(x+2)的圖象關(guān)于直線x=-2對稱,且當x∈(0,+∞)時,f(x)=|log2x|,若a=f(-3),b=f($\frac{1}{4}$),c=f(2),則a,b,c的大小關(guān)系是( 。
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

分析 利用函數(shù)y=f(x+2)的圖象關(guān)于直線x=-2對稱,可得函數(shù)y=f(x)的圖象關(guān)于y軸對稱,是偶函數(shù).由此利用對數(shù)函數(shù)的單調(diào)性能求出結(jié)果.

解答 解:∵函數(shù)y=f(x+2)的圖象關(guān)于直線x=-2對稱,
∴函數(shù)y=f(x)的圖象關(guān)于y軸對稱,是偶函數(shù).
∵當x∈(0,+∞)時,f(x)=|log2x|,
∴a=f(-3)=f(3)=|log23|=log23∈(log22,log24)=(1,2),
b=f($\frac{1}{4}$)=|log2$\frac{1}{4}$|=|-2|=2,
c=f(2)=|log22|=1,
∴b>a>c.
故選:B.

點評 熟練掌握軸對稱、奇偶函數(shù)的性質(zhì)、利用導數(shù)研究函數(shù)的單調(diào)性、對數(shù)的運算性質(zhì)等是解題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.等比數(shù)列{an}的第5項恰好等于前5項之和,那么該數(shù)列的公比q=( 。
A.-1B.1C.1或-1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.函數(shù)f(x)=$\sqrt{3-2x}$的定義域為$(-∞,\frac{3}{2}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}x-2,\;x≥0\\{2^x},\;x<0\end{array}$,則f(-1)=(  )
A.-1B.$\frac{1}{2}$C.2D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{2}cosα}\\{y=\sqrt{2}+\sqrt{2}sinα}\end{array}\right.$(α為參數(shù)),M是C1上的動點,P點滿足$\overrightarrow{OP}$=2$\overrightarrow{OM}$,P點的軌跡為曲線C2
(1)求C2的方程;
(2)在以O(shè)為極點,x軸的正半軸為極軸的極坐標系中,射線θ=$\frac{π}{4}$與C1的異于極點的交點為A,與C2的異于極點的交點為B,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知函數(shù)y=f(x)是定義在R上的奇函數(shù),?x∈R,f(x-1)=f(x+1)成立,當x∈(0,1)且x1≠x2時,有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0.給出下列命題:
①f(1)=0;
②f(x)在[-2,2]上有5個零點;
③直線x=2 016是函數(shù)y=f(x)圖象的一條對稱軸.
④點(2 016,0)是函數(shù)y=f(x)圖象的一個對稱中心;
則正確命題的序號是①②④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知f(x)是定義在R上的函數(shù),若對于任意的x,y∈R,都有f(x+y)=f(x)+f(y),且x>0,有f(x)>0.
(1)求證:f(0)=0;
(2)判斷函數(shù)的奇偶性;
(3)判斷函數(shù)f(x)在R上的單調(diào)性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知復(fù)數(shù)(1+i)z-2=i,則復(fù)數(shù)z在復(fù)平面上對應(yīng)的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上一點A關(guān)于原點的對稱點為B,F(xiàn)為其右焦點,若AF⊥BF,設(shè)∠ABF=α,且α∈[$\frac{π}{12}$,$\frac{π}{4}$],則該橢圓離心率的最大值為( 。
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.1

查看答案和解析>>

同步練習冊答案