設(shè)fk(n)為關(guān)于n的k(k∈N)次多項式.?dāng)?shù)列{an}的首項a1=1,前n項和為Sn.對于任意的正整數(shù)n,an+Sn=fk(n)都成立.
(I)若k=0,求證:數(shù)列{an}是等比數(shù)列;
(Ⅱ)試確定所有的自然數(shù)k,使得數(shù)列{an}能成等差數(shù)列.
【答案】
分析:(Ⅰ)若k=0,不妨設(shè)f
(n)=c(c為常數(shù)).即a
n+S
n=c,結(jié)合數(shù)列中a
n與 S
n關(guān)系
求出數(shù)列{a
n}的通項公式后再證明.
(Ⅱ)由特殊到一般,實質(zhì)上是由已知a
n+S
n=f
k(n) 考查數(shù)列通項公式求解,以及等差數(shù)列的判定.
解答:(Ⅰ)證明:若k=0,則f
k(n)即f
(n)為常數(shù),
不妨設(shè)f
(n)=c(c為常數(shù)).
因為a
n+S
n=f
k(n)恒成立,所以a
1+S
1=c,c=2a
1=2.
而且當(dāng)n≥2時,
a
n+S
n=2,①
a
n-1+S
n-1=2,②
①-②得 2a
n-a
n-1=0(n∈N,n≥2).
若a
n=0,則a
n-1=0,…,a
1=0,與已知矛盾,所以a
n≠0(n∈N
*).
故數(shù)列{a
n}是首項為1,公比為
的等比數(shù)列.
(Ⅱ)解:(1)若k=0,由(Ⅰ)知,不符題意,舍去.
(2)若k=1,設(shè)f
1(n)=bn+c(b,c為常數(shù)),
當(dāng)n≥2時,a
n+S
n=bn+c,③
a
n-1+S
n-1=b(n-1)+c,④
③-④得 2a
n-a
n-1=b(n∈N,n≥2).
要使數(shù)列{a
n}是公差為d(d為常數(shù))的等差數(shù)列,
必須有a
n=b-d(常數(shù)),
而a
1=1,故{a
n}只能是常數(shù)數(shù)列,通項公式為a
n=1(n∈N
*),
故當(dāng)k=1時,數(shù)列{a
n}能成等差數(shù)列,其通項公式為a
n=1(n∈N
*),
此時f
1(n)=n+1.
(3)若k=2,設(shè)f
2(n)=pn
2+qn+t(a≠0,a,b,c是常數(shù)),
當(dāng)n≥2時,
a
n+S
n=pn
2+qn+t,⑤
a
n-1+S
n-1=p(n-1)
2+q(n-1)+t,⑥
⑤-⑥得 2a
n-a
n-1=2pn+q-p(n∈N,n≥2),
要使數(shù)列{a
n}是公差為d(d為常數(shù))的等差數(shù)列,
必須有a
n=2pn+q-p-d,且d=2p,
考慮到a
1=1,所以a
n=1+(n-1)•2p=2pn-2p+1(n∈N
*).
故當(dāng)k=2時,數(shù)列{a
n}能成等差數(shù)列,
其通項公式為a
n=2pn-2p+1(n∈N
*),
此時f
2(n)=an
2+(a+1)n+1-2a(a為非零常數(shù)).
(4)當(dāng)k≥3時,若數(shù)列{a
n}能成等差數(shù)列,根據(jù)等差數(shù)列通項公式可知Sn是關(guān)于n的二次型函數(shù),
則a
n+S
n的表達式中n的最高次數(shù)為2,
故數(shù)列{a
n}不能成等差數(shù)列.
綜上得,當(dāng)且僅當(dāng)k=1或2時,數(shù)列{a
n}能成等差數(shù)列.
點評:本題考查數(shù)列通項公式的求解,等差數(shù)列的判定,考查閱讀理解、計算論證等能力.