15.(1)在△ABC中,a=3,c=2,B=60°求b
(2)在△ABC中,A=60°,B=45°,a=2 求c.

分析 (1)利用余弦定理即可求出b的值;
(2)利用三角形內(nèi)角和求出C的值,再由正弦定理求出c的值.

解答 解:(1)在△ABC中,a=3,c=2,B=60°,
由余弦定理可得b2=a2+c2-2accosB
=32+22-2×3×2×cos60°
=7,
∴b=$\sqrt{7}$;
(2)在△ABC中,A=60°,B=45°,
∴C=75°,
∴sin75°=sin(30°+45°)=sin30°cos45°+cos30°sin45°=$\frac{\sqrt{2}+\sqrt{6}}{4}$;
又a=2,
由正弦定理得$\frac{c}{sinC}$=$\frac{a}{sinA}$,
∴c=$\frac{2}{sin60°}$×sin75°=$\frac{2}{\frac{\sqrt{3}}{2}}$×$\frac{\sqrt{2}+\sqrt{6}}{4}$=$\frac{\sqrt{6}}{3}$+$\sqrt{2}$.

點評 本題考查了正弦、余弦定理的應(yīng)用問題,也考查了三角形內(nèi)角和定理與三角恒等變換問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F,且$EF=\frac{{\sqrt{2}}}{2}$,則下列結(jié)論中正確的是①②③④.
①EF∥平面ABCD;
②平面ACF⊥平面BEF;
③三棱錐E-ABF的體積為定值;
④存在某個位置使得異面直線AE與BF成角30o

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.lg2+1g5=1$,\root{4}{{{{(-100)}^4}}}$=100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知直線l1:x+my+6=0和直線l2:(m-2)x+3y+2m=0,試分別求實數(shù)m的值.
(1)l1⊥l2;
(2)l1∥l2
(3)l1與l2重合;
(4)相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.關(guān)于x的不等式$\frac{x+2}{k}$>1+$\frac{x-3}{{k}^{2}}$(其中k∈R,k≠0).
(1)若x=3在上述不等式的解集中,試確定k的取值范圍;
(2)若k>1時,上述不等式的解集是x∈(3,+∞),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.經(jīng)過兩點(x1,y1),(x2,y2)的直線方程都可以表示為( 。
A.$\frac{x-{x}_{1}}{{x}_{2}-{x}_{1}}$=$\frac{y-{y}_{1}}{{y}_{2}-{y}_{1}}$B.$\frac{x-{x}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{y-{y}_{2}}{{y}_{1}-{y}_{2}}$
C.(y-y1)(x2-x1)=(x-x1)(y2-y1D.y-y1=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在空間幾何體A-BCDE中,底面BCDE是梯形,且CD∥BE,CD=2BE=4,∠CDE=60°,△ADE是邊長為2的等邊三角形,F(xiàn)為AC的中點.AC=4
(Ⅰ)求證:平面ADE⊥平面BCDE;
(Ⅱ)求幾何體C-BDF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.與圓${C_1}:{(x+1)^2}+{(y-3)^2}=36,\;{C_2}:{x^2}+{y^2}-4x+2y+4=0$都相切的直線有( 。
A.1條B.2條C.3條D.4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.圓C:x2+y2-2x-2y+1=0關(guān)于直線l:x-y=2對稱的圓的方程為(x-3)2+(y+1)2=1.

查看答案和解析>>

同步練習(xí)冊答案