2.若|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$=3,則$\overrightarrow$與$\overrightarrow{a}$的夾角為$\frac{2π}{3}$.

分析 利用兩個(gè)向量垂直的性質(zhì),兩個(gè)向量的數(shù)量積的定義,求得$\overrightarrow$與$\overrightarrow{a}$的夾角的余弦值,可得$\overrightarrow$與$\overrightarrow{a}$的夾角.

解答 解:設(shè)$\overrightarrow$與$\overrightarrow{a}$的夾角為θ,θ∈[0,π],∵若|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$=3,
∴($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$=$\overrightarrow{a}•\overrightarrow$+${\overrightarrow}^{2}$=1•2•cosθ+4=3,cosθ=-$\frac{1}{2}$,∴θ=$\frac{2π}{3}$,
故答案為:$\frac{2π}{3}$.

點(diǎn)評 本題主要考查兩個(gè)向量垂直的性質(zhì),兩個(gè)向量的數(shù)量積的定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,三內(nèi)角A,B,C的對邊分別為a,b,c.
(1)若c=$\sqrt{6},A={45°}$,a=2,求C,b;
(2)若a=btanA,且B為鈍角,證明:B-A=$\frac{π}{2}$,并求sinA+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足(2a-c)cos B=bcos C.
(1)求角B的大。
(2)若$a=c=\sqrt{3}$,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.祖暅著《綴術(shù)》有云:“緣冪勢既同,則積不容異”,這就是著名的祖暅原理,如圖1,現(xiàn)有一個(gè)半徑為R的實(shí)心球,以該球某條直徑為中心軸挖去一個(gè)半徑為r的圓柱形的孔,再將余下部分熔鑄成一個(gè)新的實(shí)心球,則新實(shí)心球的半徑為$\root{3}{\frac{2{R}^{3}-3{r}^{2}\sqrt{{R}^{2}-{r}^{2}}}{2}}$(如圖2,勢為h時(shí)冪為S=π(R2-r2-h2))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知復(fù)數(shù)z滿足i(z+1)=-2+2i(i是虛數(shù)單位)
(1)求z的虛部;  
(2)若$ω=\frac{z}{1-2i}$,求|ω|2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知以點(diǎn)$C(t,\frac{2}{t})(t∈R且t≠0)$為圓心的圓經(jīng)過原點(diǎn)O,且與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.
(1)求證:△AOB的面積為定值.
(2)設(shè)直線2x+y-4=0與圓C交于點(diǎn)M,N,若|OM|=|ON|,求圓C的方程.
(3)當(dāng)t>0時(shí),在(2)的條件下,設(shè)P,Q分別是直線l:x+y+2=0和圓C上的動(dòng)點(diǎn),求|PB|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在平面直角坐標(biāo)系中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=t+1\\ y=\sqrt{3}t+1\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為3ρ2cos2θ+4ρ2sin2θ=12.
(Ⅰ)寫出直線l的極坐標(biāo)方程與曲線C的直角坐標(biāo)方程;
(Ⅱ)已知與直線l平行的直線l'過點(diǎn)M(1,0),且與曲線C交于A,B兩點(diǎn),試求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)偶函數(shù)f(x)=$cos(\frac{π}{ω}x-φ)$,其中ω>0,0≤φ<2π.
(1)求φ的值;
(2)若函數(shù)f(x)在(0,3)上單調(diào)遞減,當(dāng)ω取得最小值時(shí),求f(1)+f(2)+…+f(2017)的值;
(3)在(2)的條件下,若g(x)=-2f2(x-$\frac{3}{2}$)-f(x+$\frac{3}{2}$),且對任意的x1,x2∈[-$\frac{3}{2π}$,$\frac{11}{2π}$],8|g(x1)-g(x2)|≤$\sqrt{3}$m+3恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知$\overrightarrow a=(2,1)$,$\overrightarrow b=(-4,λ)$,且$\overrightarrow a∥\overrightarrow b$,則λ=-2.

查看答案和解析>>

同步練習(xí)冊答案