求過直線與已知圓的交點,且在兩坐標(biāo)軸上的四個截距之和為的圓的方程.
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
OQ |
OR |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知圓O:交軸于A,B兩點,曲線C是以為長軸,離心率為的橢圓,其左焦點為F.若P是圓O上一點,連結(jié)PF,過原點O作直線PF的垂線交直線X=-2于點Q.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點P的坐標(biāo)為(1,1),求證:直線PQ與圓相切;
(Ⅲ)試探究:當(dāng)點P在圓O上運動時(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請證明;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省鹽城中學(xué)高一下學(xué)期期末考試數(shù)學(xué) 題型:解答題
.已知圓以為圓心,為半徑,過點作直線與圓交于不同兩點
(Ⅰ)若求直線的方程;
(Ⅱ)當(dāng)直線的斜率為時,過直線上一點作圓的切線為切點使求點的坐標(biāo);
(Ⅲ)設(shè)的中點為試在平面上找一點,使的長為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆河北省高一下學(xué)期二調(diào)考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知圓的方程為且與圓相切.
(1)求直線的方程;
(2)設(shè)圓與軸交于兩點,M是圓上異于的任意一點,過點且與軸垂直的直線為,直線交直線于點P’,直線交直線于點Q’
求證:以P’Q’為直徑的圓總過定點,并求出定點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆江蘇省高二上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分16分) 已知圓的方程為,直線的方程為,點在直線上,過點作圓的切線,切點為.
(1)若,試求點的坐標(biāo);
(2)若點的坐標(biāo)為,過作直線與圓交于兩點,當(dāng)時,求直線的方程;ks.5u
(3)經(jīng)過三點的圓是否經(jīng)過異于點M的定點,若經(jīng)過,請求出此定點的坐標(biāo);若不經(jīng)過,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com