【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù),使恒成立,若存在,求出實(shí)數(shù)的取值范圍;若不存在,說(shuō)明理由.
【答案】(1)函數(shù)的單調(diào)增區(qū)間為和,單調(diào)減區(qū)間為;
(2)當(dāng)時(shí),使恒成立.
【解析】試題分析:(1)借助題設(shè)條件運(yùn)用導(dǎo)數(shù)的知識(shí);(2)借助題設(shè)運(yùn)用導(dǎo)數(shù)的知識(shí)求解探求.
試題解析:
(1)函數(shù)的定義域?yàn)?/span>,
,
當(dāng)時(shí),
由,得,或,
由,得,
故函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為,
當(dāng)時(shí), 恒成立,
故函數(shù)的單調(diào)遞增區(qū)間為.
(2)恒成立等價(jià)于恒成立,
令,
當(dāng)時(shí),即當(dāng)時(shí), ,
故在內(nèi)不能恒成立,
當(dāng)時(shí),即當(dāng)時(shí),則,
故在內(nèi)不能恒成立,
當(dāng)時(shí),即當(dāng)時(shí),
,
由解得,
當(dāng)時(shí), ;
當(dāng)時(shí), .
所以,
解得.
綜上,當(dāng)時(shí), 在內(nèi)恒成立,即恒成立,
所以實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】分別求適合下列條件的雙曲線(xiàn)的標(biāo)準(zhǔn)方程.
(Ⅰ)焦點(diǎn)在軸上,焦距是,離心率;
(Ⅱ)一個(gè)焦點(diǎn)為的等軸雙曲線(xiàn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若大前提是:所有邊長(zhǎng)都相等的凸多邊形是正多邊形,小前提是:菱形是所有邊長(zhǎng)都相等的凸多邊形,結(jié)論是:菱形是正多邊形,那么這個(gè)演繹推理出錯(cuò)在( )
A. 大前提出錯(cuò) B. 小前提出錯(cuò) C. 推理過(guò)程出錯(cuò) D. 沒(méi)有出錯(cuò)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)四棱錐的三視圖如圖所示.
(1)求證:PA⊥BD;
(2)在線(xiàn)段PD上是否存在一點(diǎn)Q,使二面角Q-AC-D的平面角為30°?若存在,求的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果的定義域?yàn)?/span>,對(duì)于定義域內(nèi)的任意,存在實(shí)數(shù)使得成立,則稱(chēng)此函數(shù)具有“性質(zhì)”.給出下列命題:
①函數(shù)具有“性質(zhì)”;
②若奇函數(shù)具有“性質(zhì)”,且,則;
③若函數(shù)具有“性質(zhì)”, 圖象關(guān)于點(diǎn)成中心對(duì)稱(chēng),且在上單調(diào)遞減,則在上單調(diào)遞減,在上單調(diào)遞增;
④若不恒為零的函數(shù)同時(shí)具有“性質(zhì)”和 “性質(zhì)”,且函數(shù)對(duì),都有成立,則函數(shù)是周期函數(shù).
其中正確的是 (寫(xiě)出所有正確命題的編號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A. 由歸納推理得到的結(jié)論一定正確
B. 由類(lèi)比推理得到的結(jié)論一定正確
C. 由合情推理得到的結(jié)論一定正確
D. 演繹推理在前提和推理形式都正確的前提下,得到的結(jié)論一定正確
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若不等式x2-(a+1)x+a≤0的解集是[-4,3]的子集,則a的取值范圍是( )
A. [-4,1] B. [-4,3] C. [1,3] D. [-1,3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),.
(1)求的單調(diào)區(qū)間;
(2)判斷方程在區(qū)間上是否有解?若有解,說(shuō)明解得個(gè)數(shù)及依據(jù);若無(wú)解,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com