【題目】設(shè)全集U=R,A={x|x2+px+12=0},B={x|x2﹣5x+q=0},若(UA)∩B={2},A∩(UB)={4},求A∪B.

【答案】解:∵
∴A={3,4},B={2,3}
∴A∪B={2,3,4}
【解析】利用:“(CUA)∩B={2},A∩(CUB)={4},”得到4∈A且2∈B,列出方程組求得p,q,從而得出A,B,最后求出A∪B即可.
【考點精析】利用集合的并集運算和集合的交集運算對題目進(jìn)行判斷即可得到答案,需要熟知并集的性質(zhì):(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,則AB,反之也成立;交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線y2=2px(p>0)的焦點F的直線l與拋物線在第一象限的交點為A,與拋物線的準(zhǔn)線的交點為B,點A在拋物線準(zhǔn)線上的射影為C,若=,=48,則拋物線的方程為(  )
A.y2=4x
B.y2=8x
C.y2=16x
D.y2=4X

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(ax﹣)cos(ax﹣)+2cos2(ax﹣)(a>0),且函數(shù)的最小正周期為

(Ⅰ)求a的值;

(Ⅱ)求f(x)在[0,]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線y2=2px(p>0)的焦點,斜率為2的直線交拋物線于A(x1 , y1)和B(x2 , y2)(x1<x2)兩點,且|AB|=9,
(1)求該拋物線的方程;
(2)O為坐標(biāo)原點,C為拋物線上一點,若= , 求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,若f(f(a))=2,則a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)的二次項系數(shù)為a(a<0),且1和3是函數(shù)y=f(x)+2x的兩個零點.若方程f(x)+6a=0有兩個相等的根,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求下列曲線的標(biāo)準(zhǔn)方程:
(1)與橢圓+=1有相同的焦點,直線y=x為一條漸近線.求雙曲線C的方程.
(2)焦點在直線3x﹣4y﹣12=0 的拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè){an}是正項等比數(shù)列,令Sn=lga1+lga2+…+lgan , n∈N* , 若存在互異的正整數(shù)m,n,使得Sm=Sn , 則Sm+n=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=
(1)若f(x)>k的解集為{x|x<﹣3或x>﹣2},求k的值;
(2)若對任意x>0,f(x)≤t恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案