17.實軸是虛軸的3倍,且經(jīng)過點P(3,0)的雙曲線的標準方程是$\frac{x^2}{9}-{y^2}=1$.

分析 由已知,焦點在x軸上,且(3,0)為右頂點,a=3.又實軸是虛軸的3倍,求出b后,再寫出標準方程即可.

解答 解:因為雙曲線過點P(3,0),所以焦點在x軸上,且(3,0)為右頂點,∴a=3.
又實軸是虛軸的3倍,
∴b=1,
∴雙曲線的標準方程是$\frac{x^2}{9}-{y^2}=1$.
故答案為:$\frac{x^2}{9}-{y^2}=1$.

點評 本題考查雙曲線的簡單幾何性質(zhì)、標準方程求解.屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左焦點為F,右頂點為A,點B在橢圓上,且BF⊥x軸,直線AB交y軸于點P,若|AP|=2|PB|,則橢圓的離心率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.如果一扇形的圓心角為120°,半徑等于10cm,則扇形的面積為( 。
A.$\frac{100}{3}c{m^2}$B.$\frac{100}{3}πc{m^2}$C.6000cm2D.$\frac{200}{3}πc{m^2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知y=f(x)為奇函數(shù),當x≥0時f(x)=x(1-x),則當x≤0時,求f(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.在等差數(shù)列{an}中,a1=1,a4=49,前n項和Sn=100,則公差d和項數(shù)n為( 。
A.d=12,n=4B.d=-18,n=2C.d=16,n=3D.d=16,n=4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.過直線x+y=0上一點P作圓C:(x+1)2+(y-5)2=2的兩條切線l1,l2,A,B為切點,當CP與直線y=-x垂直時,∠APB=( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知等差數(shù)列{an}滿足a2+a3+a4=15,a4+a6=18,數(shù)列{bn}的前n項和為S,且滿足Sn=2bn-2.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)數(shù)列{cn}滿足cn=$\frac{{a}_{n}}{_{n}}$,求數(shù)列{cn}的n前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知x,y滿足條件:$\left\{\begin{array}{l}7x-5y-23≤0\\ x+7y-11≤0\\ 4x+y+10≥0\end{array}\right.$,求:
(1)4x-3y的最小值;
(2)$\frac{x-y+1}{x+5}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知數(shù)列{an}的首項為a1=1,且滿足對任意的n∈N*,都有an+1-an≤2n,an+2-an≥3×2n成立,則a2015=( 。
A.22006-1B.22006+1C.22015+1D.22015-1

查看答案和解析>>

同步練習冊答案