分析 (1)利用等差數(shù)列的通項公式可得an,利用遞推關(guān)系與等比數(shù)列的通項公式可得bn.
(2)利用“錯位相減法”與等比數(shù)列的前n項和公式即可得出.
解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,
∵a2+a3+a4=15,a4+a6=18,
∴$\left\{\begin{array}{l}{3{a}_{1}+6d=15}\\{2{a}_{1}+8d=18}\end{array}\right.$,解得a1=1,d=2.
∴an=1+2(n-1)=2n-1.
由Sn=2bn-2,
當(dāng)n=1時,b1=2b1-2,解得b1=2.
當(dāng)n≥2時,bn=Sn-Sn-1=2bn-2-(2bn-1-2),
化為bn=2bn-1,
∴數(shù)列{bn}是等比數(shù)列,公比為2,首項為2.
∴bn=2n.
(2)cn=$\frac{{a}_{n}}{_{n}}$=$\frac{2n-1}{{2}^{n}}$,
∴數(shù)列{cn}的n前項和Tn=$\frac{1}{2}+\frac{3}{{2}^{2}}$+$\frac{5}{{2}^{3}}$+…+$\frac{2n-1}{{2}^{n}}$,
$\frac{1}{2}{T}_{n}$=$\frac{1}{{2}^{2}}+\frac{3}{{2}^{3}}$+…+$\frac{2n-3}{{2}^{n}}$+$\frac{2n-1}{{2}^{n+1}}$.
∴$\frac{1}{2}{T}_{n}$=$\frac{1}{2}+2(\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}})$-$\frac{2n-1}{{2}^{n+1}}$=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$-$\frac{1}{2}$-$\frac{2n-1}{{2}^{n+1}}$=$\frac{3}{2}$-$\frac{2n+3}{{2}^{n+1}}$.
∴Tn=3-$\frac{2n+3}{{2}^{n}}$.
點評 本題考查了“錯位相減法”、等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式、遞推關(guān)系的應(yīng)用,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{9}{7}$ | B. | $\frac{9}{7}$ | C. | 3 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | a>c>b | C. | b>c>a | D. | b>a>c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1] | B. | [0,1] | C. | [1,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com