設(shè)命題p:f(x)=在區(qū)間(1,+∞)上是減函數(shù);命題q:x1,x2是方程x2-ax-2=0的兩個實根,且不等式m2+5m-3≥|x1-x2|對任意的實數(shù)a∈[-1,1]恒成立.若p∧q為真,試求實數(shù)m的取值范圍.

(1,+∞)

解析試題分析:先根據(jù)分式函數(shù)的單調(diào)性求出命題p為真時m的取值范圍,然后根據(jù)題意求出|x1-x2|的最大值,再解不等式,若-p∧q為真則命題p假q真,從而可求出m的取值范圍.
試題解析:由于f(x)=的單調(diào)遞減區(qū)間是(-∞,m)和(m,+∞),而f(x)又在(1,+∞)上是減函數(shù),所以m≤1,即p:m≤1.對于命題q:|x1-x2|=≤3,則m2+5m-3≥3,即m2+5m-6≥0,
解得m≥1或m≤-6,若p∧q為真,則p假q真,所以解之得m>1,因此實數(shù)m的取值范圍是(1,+∞).
考點:1.函數(shù)恒成立問題;2.復(fù)合命題的真假.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(2013•湖北)設(shè)a>0,b>0,已知函數(shù)f(x)=
(1)當a≠b時,討論函數(shù)f(x)的單調(diào)性;
(2)當x>0時,稱f(x)為a、b關(guān)于x的加權(quán)平均數(shù).
(1)判斷f(1),f(),f()是否成等比數(shù)列,并證明f()≤f();
(2)a、b的幾何平均數(shù)記為G.稱為a、b的調(diào)和平均數(shù),記為H.若H≤f(x)≤G,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知向量,,函數(shù)的圖像與直線的相鄰兩個交點之間的距離為
(1)求的值;
(2)求函數(shù)上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù)的定義域為E,值域為F.
(1)若E={1,2},判斷實數(shù)λ=lg22+lg2lg5+lg5﹣與集合F的關(guān)系;
(2)若E={1,2,a},F(xiàn)={0,},求實數(shù)a的值.
(3)若,F(xiàn)=[2﹣3m,2﹣3n],求m,n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)在點處的切線方程為.
(1)求、的值;
(2)當時,恒成立,求實數(shù)的取值范圍;
(3)證明:當,且時,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),若函數(shù)的圖象恒在軸上方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)若上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)定義在(―1,1)上,對于任意的,有,且當時,。
(1)驗證函數(shù)是否滿足這些條件;
(2)判斷這樣的函數(shù)是否具有奇偶性和單調(diào)性,并加以證明;
(3)若,求方程的解。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=lg(k∈R,且k>0).
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)在[10,+∞)上單調(diào)遞增,求k的取值范圍.

查看答案和解析>>

同步練習冊答案