已知實(shí)數(shù)x、y滿足條件
x≥0
y≥0
2x+y≤2
,那么x+3y的最大值是( 。
A、1B、3C、6D、8
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,設(shè)z=x+3y,利用z的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分).
設(shè)z=x+3y,得y=-
1
3
x+
z
3
,平移直線y=-
1
3
x+
z
3

由圖象可知當(dāng)直線y=-
1
3
x+
z
3
經(jīng)過(guò)點(diǎn)A(0,2)時(shí),直線的截距最大,此時(shí)z取得最大值,
此時(shí)z=0+3×2=6
故選:C.
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃問(wèn)題中的基本方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)若正數(shù)a,b滿足ab=a+b+3,則分別求ab,a+b的取值范圍
(2)若x>0,求函數(shù)f(x)=
12
x
+3x的最小值;若x<0,求函數(shù)f(x)=
12
x
+3x的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=|x+1|+|x-a|.
(Ⅰ)若a=2,解不等式f(x)≥5;
(Ⅱ)如果?x∈R,f(x)≥3,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦點(diǎn)F(-c,0)(c>0),作圓x2+y2=
a2
4
的切線,切點(diǎn)為E,延長(zhǎng)FE交雙曲線右支于點(diǎn)P,若
OP
=2
OE
-
OF
,則雙曲線的離心率為(  )
A、
10
B、
10
5
C、
10
2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,三邊a,b,c所對(duì)的角分別為A,B,C,若a2-b2=
3
bc,sinC=2
3
sinB,則角A=( 。
A、30°B、45°
C、150°D、135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)空間幾何體的三視圖如圖所示,且這個(gè)空間幾何體的所有頂點(diǎn)都在一個(gè)球面上,則這個(gè)球的體積是( 。
A、
28π
3
B、
28
21
π
27
C、
7
21
π
9
D、
7
21
π
27

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若滿足條件
x-y+2≥0
x+y-2≥0
kx-y-2k+1≤0
的點(diǎn)P(x,y)構(gòu)成三角形區(qū)域,則實(shí)數(shù)k的取值范圍是( 。
A、(1,+∞)
B、(0,1)
C、(-1,1)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

log212-log23=( 。
A、-2
B、0
C、
1
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
ax2-(2a+1)x+2lnx(a>0).
(Ⅰ)若a=
1
3
,求f(x)在[1,3]上的最大值;
(Ⅱ)若a≠
1
2
,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)
1
2
<a<1時(shí),判斷函數(shù)f(x)在區(qū)間[1,2]上有無(wú)零點(diǎn)?寫出推理過(guò)程.

查看答案和解析>>

同步練習(xí)冊(cè)答案