求函數(shù)在區(qū)間上的最值.

;.

解析試題分析:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/6e/9/w5irw1.png" style="vertical-align:middle;" />,
所以,
所以:

x
-2
(-2,0)
0
(0, )

(,2)
2

 
+
0
-
0
+
 

-11

5



5
 
所以.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的最值。
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,注意利用導(dǎo)數(shù)求函數(shù)最值的步驟,尤其是做大題時(shí)。屬于基礎(chǔ)題型。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)的最小值;
(2)若≥0對(duì)任意的恒成立,求實(shí)數(shù)的值;
(3)在(2)的條件下,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)(e為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)于任意,不等式恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)的零點(diǎn)的集合為{0,1},且是f(x)的一個(gè)極值點(diǎn)。
(1)求的值;
(2)試討論過點(diǎn)P(m,0)與曲線y=f(x)相切的直線的條數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題14分) 已知函數(shù)f(x)=ax3+bx2+cx(a≠0)是定義在R上的奇函數(shù),且x=-1時(shí),函數(shù)取極值1。
(1)求a,b,c的值;
(2)若x1,x2∈[-1,1],求證:|f(x1)-f(x2)|≤2;
(3)求證:曲線y=f(x)上不存在兩個(gè)不同的點(diǎn)A,B,使過A, B兩點(diǎn)的切線都垂直于直線AB。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)(其中e為自然對(duì)數(shù))
(1)求F(x)="h" (x)的極值。
(2)設(shè) (常數(shù)a>0),當(dāng)x>1時(shí),求函數(shù)G(x)的單調(diào)區(qū)間,并在極值存在處求極值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)。
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求在曲線上一點(diǎn)的切線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,有一邊長為2米的正方形鋼板缺損一角(圖中的陰影部分),邊緣線是以直線為對(duì)稱軸,以線段的中點(diǎn)為頂點(diǎn)的拋物線的一部分.工人師傅要將缺損一角切割下來,使剩余的部分成為一個(gè)直角梯形.

(Ⅰ)請(qǐng)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求陰影部分的邊緣線的方程;
(Ⅱ)如何畫出切割路徑,使得剩余部分即直角梯形的面積最大?
并求其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知函數(shù)
(1)若當(dāng)的表達(dá)式;
(2)求實(shí)數(shù)上是單調(diào)函數(shù).

查看答案和解析>>

同步練習(xí)冊答案