【題目】如圖,直三棱柱中,,,的中點,點為線段上的一點.

(1)若,求證:

(2)若,異面直線所成的角為,求直線與平面所成角的正弦值.

【答案】(1)證明見解析;(2)

【解析】

(1) 根據(jù)三棱柱是直三棱柱的特征,又,可作中點,連接DM,通過線面垂直證明平面,可推出,又,可證

(2) 通過作圖,分別以,軸、軸、軸,建立空間直角體系,先通過幾何法求出長度,分別表示出線面角各點對應的坐標,再用向量公式算出直線與平面所成角的正弦值

證明:(1)取中點,連接,,有

因為,所以,

又因為三棱柱為直三棱柱,

所以平面平面,

又因為平面平面,

所以平面,

又因為平面,

所以

又因為,平面,平面,

所以平面,

又因為平面,

所以,因為,

所以.

(2)設,如圖以為坐標原點,

分別以,軸、軸、軸,建立空間直角體系,

由(1)可知,所以

,,,,,

對平面,,

所以其法向量可表示為.

,

所以直線與平面成角的正弦值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】交強險是車主必須為機動車購買的險種,若普通座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如下表(其中浮動比率是在基準保費上上下浮動):

交強險浮動因素和浮動費率比率表

浮動因素

浮動比率

上一個年度未發(fā)生有責任道路交通事故

下浮

上兩個年度未發(fā)生有責任道路交通事故

下浮

上三個及以上年度未發(fā)生有責任道路交通事故

下浮

上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故

上一個年度發(fā)生兩次及兩次以上有責任道路交通事故

上浮

上一個年度發(fā)生有責任道路交通死亡事故

上浮

某機構為了研究某一品牌普通座以下私家車的投保情況隨機抽取了輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格

類型

數(shù)量

(Ⅰ)求這輛車普通座以下私家車在第四年續(xù)保時保費的平均值(精確到

(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基準保費的車輛記為事故車.假設購進一輛事故車虧損一輛非事故車盈利,且各種投保類型車的頻率與上述機構調查的頻率一致.試完成下列問題:

①若該銷售商店內有六輛(車齡已滿三年)該品牌二手車,某顧客欲在該店內隨機挑選輛車,求這輛車恰好有一輛為事故車的概率;

②若該銷售商一次購進輛車車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),

1)解方程

2)令,求的值.

3)若是定義在上的奇函數(shù),且對任意恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面是菱形,的中點,點在側棱上.

(1)求證:平面;

(2)若的中點,求證:平面;

(3)若,試求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓上任意一點到兩焦點距離之和為,離心率為

(1)求橢圓的標準方程;

(2)若直線的斜率為,直線與橢圓C交于兩點.點為橢圓上一點,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的幾何體,底面ABFE是邊長為2的正方形,DECF均垂直于平面ABFE,且

1)證明:BE∥平面ACD

2)求三棱錐BACD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地有一企業(yè)2007年建廠并開始投資生產,年份代號為7,2008年年份代號為8,依次類推.經(jīng)連續(xù)統(tǒng)計9年的收入情況如下表(經(jīng)數(shù)據(jù)分析可用線性回歸模型擬合的關系):

年份代號(

7

8

9

10

11

12

13

14

15

當年收入(千萬元)

13

14

18

20

21

22

24

28

29

(Ⅰ)求關于的線性回歸方程;

(Ⅱ)試預測2020年該企業(yè)的收入.

(參考公式: ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在OAB中,頂點A的坐標是(3,0),頂點B的坐標是(1,2),記OAB位于直線左側圖形的面積為f(t)

1)求函數(shù)f(t)的解析式;

2)設函數(shù),求函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),其中

(1)時,討論函數(shù)的單調性;

(2)若函數(shù)僅在處有極值,求的取值范圍;

(3)若對于任意的,不等式上恒成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案