【題目】設(shè)函數(shù), .
(1)解方程.
(2)令,求的值.
(3)若是定義在上的奇函數(shù),且對(duì)任意恒成立,求實(shí)數(shù)k的取值范圍.
【答案】(1)2.(2)1009.(3) .
【解析】
(1)將題中的條件代入得,將視作為整體,先求出的值,從而得出的值;
(2)根據(jù)題意發(fā)現(xiàn)規(guī)律,由此規(guī)律解得結(jié)果;
(3)根據(jù)題意首先求出的值,研究出函數(shù)的單調(diào)性,將題中的不等式轉(zhuǎn)化為恒成立問題,分離變量構(gòu)造函數(shù),求解新函數(shù)最值,從而得出結(jié)果.
解:(1)因?yàn)?/span>
即 ,
即 ,
解得 或 (舍)
故.
(2)∵
,
=1009.
(3)∵是實(shí)數(shù)集上的奇函數(shù),
∴,
∴,
解得, ,
∴,
即,
設(shè),
則
因?yàn)?/span>,,
所以
所以,
所以在上單調(diào)遞增,
由
得,
又∵是上的奇函數(shù),
∴,
又∵在上單調(diào)遞增,
∴,
即對(duì)任意的都成立,
即對(duì)任意都成立,
又∵,當(dāng)且僅當(dāng),即時(shí)取“=”,
∴.
故實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)對(duì)于任意的都有,給出以下命題:
①在上是增函數(shù);
②可能存在,使得對(duì)任意的恒成立;
③可能存在,使得成立;
④沒有最大值和最小值.
則正確的命題的個(gè)數(shù)為( ).
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:
①命題:“在中,若則”的逆命題為假命題;
②“”是直線與圓相交的充分不必要條件;
③命題:“若則”的逆否命題是“若則”;
④若或,則為真命題。
其中正確的說(shuō)法個(gè)數(shù)為()
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線: 的左、右焦點(diǎn)分別為, 為坐標(biāo)原點(diǎn), 是雙曲線上在第一象限內(nèi)的點(diǎn),直線分別交雙曲線左、右支于另一點(diǎn), ,且,則雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的方程為,過(guò)點(diǎn)(為常數(shù))作拋物線的兩條切線,切點(diǎn)分別為,.
(1)過(guò)焦點(diǎn)且在軸上截距為的直線與拋物線交于,兩點(diǎn),,兩點(diǎn)在軸上的射影分別為,,且,求拋物線的方程;
(2)設(shè)直線,的斜率分別為,.求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓和定點(diǎn),其中點(diǎn)是該圓的圓心,是圓上任意一點(diǎn),線段的垂直平分線交于點(diǎn),設(shè)動(dòng)點(diǎn)的軌跡為.
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)設(shè)曲線與軸交于兩點(diǎn),點(diǎn)是曲線上異于的任意一點(diǎn),記直線,的斜率分別為,.證明:是定值;
(3)設(shè)點(diǎn)是曲線上另一個(gè)異于的點(diǎn),且直線與的斜率滿足,試探究:直線是否經(jīng)過(guò)定點(diǎn)?如果是,求出該定點(diǎn),如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)滿足,且方程有兩個(gè)相等的實(shí)數(shù)根
(1)求函數(shù)的解析式;
(2)若是上的奇函數(shù),且時(shí),,求的解析式;
(3)若不等式對(duì)一切實(shí)數(shù),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱中,,,,為的中點(diǎn),點(diǎn)為線段上的一點(diǎn).
(1)若,求證:;
(2)若,異面直線與所成的角為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合,,集合,且集合滿足,.
(1)求實(shí)數(shù)的值;
(2)對(duì)集合,其中,定義由中的元素構(gòu)成兩個(gè)相應(yīng)的集合:,,其中是有序數(shù)對(duì),集合和中的元素個(gè)數(shù)分別為和,若對(duì)任意的,總有,則稱集合具有性質(zhì).
①請(qǐng)檢驗(yàn)集合與是否具有性質(zhì),并對(duì)其中具有性質(zhì)的集合,寫出相應(yīng)的集合和;
②試判斷和的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com