精英家教網 > 高中數學 > 題目詳情

如圖,所在平面互相垂直,且,,E、F分別為AC、DC的中點.
(1)求證:
(2)求二面角的正弦值.

(1)詳見解析;(2) .

解析試題分析:(1)(方法一)過E作EO⊥BC,垂足為O,連OF,由△ABC≌△DBC可證出△EOC≌△FOC,所以∠EOC=∠FOC=,即FO⊥BC,又EO⊥BC,因此BC⊥面EFO,即可證明EF⊥BC.(方法二)由題意,以B為坐標原點,在平面DBC內過B左垂直BC的直線為x軸,BC所在直線為y軸,在平面ABC內過B作垂直BC的直線為z軸,建立如圖所示的空間直角坐標系.

易得,所以,因此,從而得;(2) (方法一)在圖1中,過O作OG⊥BF,垂足為G,連EG,由平面ABC⊥平面BDC,從而EO⊥平面BDC,從而EO⊥面BDC,又OG⊥BF,由三垂線定理知EG垂直BF,因此∠EGO為二面角E-BF-C的平面角;在△EOC中,EO=EC=BC·cos30°=,由△BGO∽△BFC知,,因此tan∠EGO=,從而sin∠EGO=,即可求出二面角E-BF-C的正弦值.
(方法二)在圖2中,平面BFC的一個法向量為,設平面BEF的法向量,又,由 得其中一個,設二面角E-BF-C的大小為,且由題意知為銳角,則,因此sin∠EGO=,即可求出二面角E-BF-C的正弦值.
(1)證明:
(方法一)過E作EO⊥BC,垂足為O,連OF,

由△ABC≌△DBC可證出△EOC≌△FOC,所以∠EOC=∠FOC=,即FO⊥BC,
又EO⊥BC,因此BC⊥面EFO,
又EF面EFO,所以EF⊥BC.
(方法二)由題意,以B為坐標原點,在平面DBC內過B左垂直BC的直線為x軸,BC所在直線為y軸,在平面ABC內過B作垂直BC的直線為z軸,建立如圖所示的空間直角坐標系.

易得B(0,0,0),A(0,-1,),D(,-1,0),C(0,2,0),因而,所以,因此,從而,所以.
(2)(方法一)在圖1中,過O作OG⊥BF,垂足為G,連EG,由平面ABC⊥平面BDC,從而EO⊥平面BDC,從而EO⊥面BDC,又OG⊥BF,由三垂線定理知EG垂直BF.
因此∠EGO為二面角E-BF-C的平面角;
在△EOC中,EO=EC=BC·cos30°=,由△BGO∽△BFC知,,因此tan∠EGO=,從而sin∠EGO=,即二面角E-BF-C的正弦值為.
(方法二)在圖2中,平面BFC的一個法向量為,設平面BEF的法向量,又,由 得其中一個,設二面角E-BF-C的大小為,且由題意知為銳角,則,因此sin∠EGO=,即二面角E-BF-C的正弦值為.
考點:1.線面垂直的判定;2.二面角.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

已知,且//(),則k=______.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

已知點,則點關于軸對稱的點的坐標為               。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,四棱柱中,底面.四邊形為梯形,,且.過三點的平面記為,的交點為.
(1)證明:的中點;
(2)求此四棱柱被平面所分成上下兩部分的體積之比;
(3)若,,梯形的面積為6,求平面與底面所成二面角大小.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,四棱錐中,平面平面,//,,
,且,.
(1)求證:平面;
(2)求和平面所成角的正弦值;
(3)在線段上是否存在一點使得平面平面,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖所示,在邊長為的正方形中,點在線段上,且,,作//,分別交,于點,,作//,分別交于點,,將該正方形沿,折疊,使得重合,構成如圖所示的三棱柱
(1)求證:平面; 
(2)若點E為四邊形BCQP內一動點,且二面角E-AP-Q的余弦值為,求|BE|的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在四棱錐中,平面,,且,點上.
(1)求證:;
(2)若二面角的大小為,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,幾何體中,為邊長為的正方形,為直角梯形,,,,,

(1)求異面直線所成角的大。
(2)求幾何體的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,點D是BC的中點.

(1)求異面直線A1B與C1D所成角的余弦值;
(2)求平面ADC1與平面ABA1夾角的正弦值.

查看答案和解析>>

同步練習冊答案