分析 由二倍角公式的變形、誘導(dǎo)公式化簡(jiǎn)已知的式子,利用平方關(guān)系、α和β的范圍、特殊角的三角函數(shù)值求出α和β的值,可得α+β的值.
解答 解:∵$\sqrt{3}$cos2$\frac{α}{2}$+$\sqrt{2}$sin2$\frac{β}{2}$=$\frac{\sqrt{2}}{2}$+$\frac{\sqrt{3}}{2}$,
∴$\frac{\sqrt{3}}{2}$(1+cosα)+$\frac{\sqrt{2}}{2}$(1-cosβ)=$\frac{\sqrt{2}}{2}$+$\frac{\sqrt{3}}{2}$,
則$\frac{\sqrt{3}}{2}$cosα-$\frac{\sqrt{2}}{2}$cosβ=0,即$\sqrt{3}$cosα=$\sqrt{2}$cosβ,①
∵sin(2017π-α)=$\sqrt{2}$cos($\frac{5}{2}$π-β),
∴sin(π-α)=$\sqrt{2}$cos($\frac{1}{2}$π-β),
則sinα=$\sqrt{2}$sinβ,②
①2+②2得,3cos2α+sin2α=2,
則$co{s}^{2}α=\frac{1}{2}$,
由α∈(0,$\frac{π}{2}$)得cosα=$\frac{\sqrt{2}}{2}$,則α=$\frac{π}{4}$,
代入②可得,sinβ=$\frac{1}{2}$,
由β∈(0,$\frac{π}{2}$)得β=$\frac{π}{6}$,
∴α+β=$\frac{π}{4}$+$\frac{π}{6}$=$\frac{5π}{12}$,
故答案為:$\frac{5π}{12}$.
點(diǎn)評(píng) 本題考查二倍角公式的變形、誘導(dǎo)公式,三角函數(shù)值的符號(hào),以及平方關(guān)系的應(yīng)用,考查化簡(jiǎn)、變形能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | ||
C. | 2個(gè) | D. | 不確定,隨k的變化而變化 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1} | B. | {2} | C. | {-1,2} | D. | {-1,0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com