設函數(shù),曲線處的切線斜率為0
求b;若存在使得,求a的取值范圍。

(1);(2).

解析試題分析:(1)根據(jù)曲線在某點處的切線與此點的橫坐標的導數(shù)的對應關系,可先對函數(shù)進行求導可得:,利用上述關系不難求得,即可得;(2)由第(1)小題中所求b,則函數(shù)完全確定下來,則它的導數(shù)可求出并化簡得:根據(jù)題意可得要對的大小關系進行分類討論,則可分以下三類:(ⅰ)若,則,故當時,單調遞增,所以,存在,使得的充要條件為,即,所以.(ⅱ)若,則,故當時,;當時,,單調遞減,在單調遞增.所以,存在,使得的充要條件為,無解則不合題意.(ⅲ)若,則.綜上,a的取值范圍是.
試題解析:(1)
由題設知,解得.
(2)的定義域為,由(1)知,,

(。┤,則,故當時,,單調遞增,
所以,存在,使得的充要條件為,即,
所以.
(ⅱ)若,則,故當時,
時,,單調遞減,在單調遞增.
所以,存在,使得的充要條件為,
,所以不合題意.
(ⅲ)若,則.
綜上,a的取值范圍是.
考點:1

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)若是函數(shù)的極值點,求曲線在點處的切線方程;
(2)若函數(shù)上為單調增函數(shù),求的取值范圍;
(3)設為正實數(shù),且,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)討論函數(shù)的單調性;
(2)若函數(shù)處取得極值,不等式對任意恒成立,求實數(shù)的取值范圍;
(3)當時,證明不等式 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知x=-是函數(shù)f(x)=ln(x+1)-x+x2的一個極值點。
(1)求a的值;
(2)求曲線y=f(x)在點(1,f(1))處的切線方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù)為常數(shù))的圖像與軸交于點,曲線在點處的切線斜率為.
(1)求的值及函數(shù)的極值;
(2)證明:當時,
(3)證明:對任意給定的正數(shù),總存在,使得當時,恒有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),若上的最小值記為.
(1)求;
(2)證明:當時,恒有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為圓周率,為自然對數(shù)的底數(shù).
(1)求函數(shù)的單調區(qū)間;
(2)求,,,,這6個數(shù)中的最大數(shù)與最小數(shù);
(3)將,,,,這6個數(shù)按從小到大的順序排列,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),其中.
(1)討論在其定義域上的單調性;
(2)當時,求取得最大值和最小值時的的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)若,求曲線在點處的切線方程;
(2)若函數(shù)在其定義域內為增函數(shù),求正實數(shù)的取值范圍;
(3)設函數(shù),若在上至少存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案