12.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某個多面體的三視圖,若該多面體的所有頂點都在球O表面上,則球O的表面積是(  )
A.36πB.48πC.56πD.64π

分析 根據(jù)三視圖知幾何體是三棱錐為棱長為4的正方體一部分,畫出直觀圖,由正方體的性質(zhì)求出球心O到平面ABC的距離d、邊AB和AC的值,在△ABC中,由余弦定理求出cos∠ACB后,求出∠ACB和sin∠ACB,由正弦定理求出△ABC的外接圓的半徑r,由勾股定理求出球O的半徑,由球的表面積公式求解.

解答 解:根據(jù)三視圖知幾何體是:
三棱錐D-ABC為棱長為4的正方體一部分,直觀圖如圖所示:
∵該多面體的所有頂點都在球O,且球心O是正方體的中心,
∴由正方體的性質(zhì)得,球心O到平面ABC的距離d=2,
由正方體的性質(zhì)可得,
AB=BD=$\sqrt{{4}^{2}+{2}^{2}}$=$2\sqrt{5}$,AC=$4\sqrt{2}$,
設(shè)△ABC的外接圓的半徑為r,
在△ABC中,由余弦定理得,
cos∠ACB=$\frac{A{C}^{2}+B{C}^{2}-A{B}^{2}}{2•AC•BC}$=$\frac{32+4-20}{2×4\sqrt{2}×2}$=$\frac{\sqrt{2}}{2}$,
∴∠ACB=45°,則sin∠ACB=$\frac{\sqrt{2}}{2}$,
由正弦定理可得,2r=$\frac{AB}{sin∠ACB}$=$\frac{2\sqrt{5}}{\frac{\sqrt{2}}{2}}$=2$\sqrt{10}$,則r=$\sqrt{10}$,
即球O的半徑R=$\sqrt{{r}^{2}+znbkdp9^{2}}$=$\sqrt{14}$,
∴球O的表面積S=4πR2=56π,
故選:C.

點評 本題考查三視圖求幾何體外接球的表面積,正弦定理、余弦定理,以及正方體的性質(zhì),結(jié)合三視圖和對應的正方體復原幾何體是解題的關(guān)鍵,考查空間想象能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)=|log3(x+1)|,實數(shù)m,n滿足-1<m<n,且f(m)=f(n).若f(x)在[m2,n]上的最大值為2,則$\frac{n}{m}$=( 。
A.-6B.-8C.-9D.-12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,邊長為$\sqrt{2}$的正方形ADEF與梯形ABCD所在的平面互相垂直,其中AB∥CD,AB⊥BC,CD=BC=$\frac{1}{2}$AB=1,AE∩DF=O,M為EC的中點.
(Ⅰ)證明:OM∥平面ABCD;
(Ⅱ)求二面角D-AB-E的正切值;
(Ⅲ)求BF與平面ADEF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.如圖,已知圓內(nèi)接四邊形ABCD,邊AD延長線交BC延長線于點P,連結(jié)AC,BD,若AB=AC=6,PD=9,則AD=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知四棱錐P-ABCD,底面ABCD為平行四邊形,PD⊥底面ABCD,AD=PD=2,DC=$\sqrt{2}$,E,F(xiàn)分別為PD,PC的中點,且BE與平面ABCD所成角的正切值為$\frac{{\sqrt{2}}}{2}$.
(I)求證:平面PAB⊥平面PBD;
(Ⅱ)求面PAB與面EFB所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.如圖,網(wǎng)絡(luò)紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積為( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.為了解某社區(qū)居民的家庭年收入所年支出的關(guān)系,隨機調(diào)查了該社區(qū)5戶家庭,得到如表統(tǒng)計數(shù)據(jù)表:
收入x (萬元)8.28.610.011.311.9
支出y (萬元)6.27.58.08.59.8
根據(jù)如表可得回歸直線方程y=$\stackrel{∧}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=0.76,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,據(jù)此估計,該社區(qū)一戶收入為20萬元家庭年支出為( 。
A.11.4萬元B.11.8萬元C.15.2萬元D.15.6萬元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.根據(jù)如表數(shù)據(jù),得到的回歸方程為$\widehaty$=$\widehatb$x+9,則$\widehatb$=(  )
x45678
y54321
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知二次函數(shù)f(x)=ax2+bx(a≠0,a,b為常數(shù))滿足f(1-x)=f(1+x),且方程f(x)=2x有兩個相等實根;設(shè)g(x)=$\frac{1}{3}$x3-x-f(x).
(Ⅰ)求f(x)的解析式;
(Ⅱ)求g(x)在[0,3]上的最值.

查看答案和解析>>

同步練習冊答案