分析 由分母不為零求出sinx+cosx≠-1,再設(shè)t=sinx+cosx,利用兩角和的正弦公式化簡(jiǎn),求出t的范圍,由平方關(guān)系表示出sinxcosx,代入解析式化簡(jiǎn),再由t的范圍和一次函數(shù)的單調(diào)性,求出原函數(shù)的最值.
解答 解:令t=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)∈[-$\sqrt{2}$,$\sqrt{2}$],可得sinxcosx=$\frac{{t}^{2}-1}{2}$,
∴f(x)=$\frac{sinxcosx}{1+sinx+cosx}$=$\frac{{t}^{2}-1}{2+2t}$=$\frac{t-1}{2}$,
故當(dāng)t=$\sqrt{2}$時(shí),f(x)取得最大值為$\frac{\sqrt{2}-1}{2}$,
故答案為:$\frac{\sqrt{2}-1}{2}$.
點(diǎn)評(píng) 本題主要考查了“sinx+cosx”和“sinxcosx”的關(guān)系,利用平方關(guān)系建立關(guān)系式,以及換元法求函數(shù)的最值問題,注意換元后需要求出未知數(shù)的范圍,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -1 | C. | -$\frac{3}{2}$ | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{3}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 1 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com