【題目】近期中央電視臺播出的《中國詩詞大會》火遍全國,下面是組委會在選拔賽時隨機抽取的100名選手的成績,按成績分組,得到的頻率分布表如下所示:

組號

分組

頻數(shù)

頻率

第1組

第2組

第3組

20

第4組

20

第5組

10

合計

100

(1)請先求出頻率分布表中①、②位置的相應(yīng)數(shù)據(jù),再完成頻率分布直方圖(用陰影表示);

(2)為了能選拔出最優(yōu)秀的選手,組委會決定在筆試成績高的第3、4、5組中用分層抽樣抽取5名選手進入第二輪面試,求第3、4、5組每組各抽取多少名選手進入第二輪面試;

(3)在(2)的前提下,組委會決定在5名選手中隨機抽取2名選手接受考官進行面試,求:第4組至少有一名選手被考官面試的概率.

【答案】(1)見解析;(2)第3、4、5組分別抽取2人、2人、1人進入第二輪面試;(3).

【解析】試題分析:(1)由頻率的意義可知,每小組的頻率=頻數(shù)/總?cè)藬?shù),

由此計算填表中空格;

(2)先算出第3、4、5組每組選手數(shù),分層抽樣得按比例確定每小組抽取個體的個數(shù),求得第3、4、5組每組各抽取多少名選手進入第二輪面試.
(3)根據(jù)概率公式計算,事件“5名選手中抽2名選手”有10種可能,而且這些事件的可能性相同,設(shè)第3組的2位選手為 ,第4組的2位選手為 ,第5組的1位選手為其中事件“第4組的2位選手, 中至少有一位選手入選”可能種數(shù)是7,那么即可求得事件A的概率.

試題解析:

(1)第1組的頻數(shù)為人,所以①處應(yīng)填的數(shù)為人,從而第2組的頻率為,因此②處應(yīng)填的數(shù)為

頻率分布直方圖如圖所示,

(2)因為第3、4、5組共有50名選手,所以利用分層抽樣在50名選手中抽取5名選手進入第二輪面試,每組抽取的人數(shù)分別為:

第3組: 人,第4組: 人,第5組: 人,所以第3、4、5組分別抽取2人、2人、1人進入第二輪面試.

(3)設(shè)第3組的2位選手為, ,第4組的2位選手為, ,第5組的1位選手為,則從這五位選手中抽取兩位選手有, , , , , , , ,共10種.

其中第4組的2位選手, 中至少有一位選手入選的有: , , , , , ,共有7種,所以第4組至少有一名選手被考官面試的概率為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】(理科)在平面直角坐標系中, 是橢圓上的一個動點,點,則的最大值為( )

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某成衣批發(fā)店為了對一款成衣進行合理定價,將該款成衣按事先擬定的價格進行試銷,得到了如下數(shù)據(jù):

批發(fā)單價x(元)

80

82

84

86

88

90

銷售量y(件)

90

84

83

80

75

68


(1)求回歸直線方程 ,其中
(2)預測批發(fā)單價定為85元時,銷售量大概是多少件?
(3)假設(shè)在今后的銷售中,銷售量與批發(fā)單價仍然服從(1)中的關(guān)系,且該款成衣的成本價為40元/件,為使該成衣批發(fā)店在該款成衣上獲得更大利潤,該款成衣單價大約定為多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)標準煤的幾組對照數(shù)據(jù):

x

3

4

5

6

y

2.5

3

4

4.5


(1)求y關(guān)于x的線性回歸方程;(已知
(2)已知該廠技術(shù)改造前100噸甲產(chǎn)品能耗為90噸標準煤,試根據(jù)(1)求出的線性回歸方程,預測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低了多少噸標準煤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)擬建立一個藝術(shù)博物館,采取競標的方式從多家建筑公司選取一家建筑公司,經(jīng)過層層篩選,甲、乙兩家建筑公司進入最后的招標.現(xiàn)從建筑設(shè)計院聘請專家設(shè)計了一個招標方案:兩家公司從個招標問題中隨機抽取個問題,已知這個招標問題中,甲公司可正確回答其中的道題目,而乙公司能正確回答毎道題目的概率均為,甲、乙兩家公司對每題的回答都是相互獨立,互不影響的.

(1)求甲、乙兩家公司共答對道題目的概率;

(2)請從期望和方差的角度分析,甲、乙兩家哪家公司競標成功的可能性更大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,邊長為2的菱形ABCD中,∠A=60°,E、F分別是BC,DC的中點,G為 BF、DE的交點,若 =

(1)試用 , 表示 , , ;
(2)求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), ).

(1)當時,討論函數(shù)的單調(diào)區(qū)間;

(2)當時,若對任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某書店銷售剛剛上市的某知名品牌的高三數(shù)學單元卷,按事先擬定的價格進行5天試銷,每種單價試銷1天,得到如表數(shù)據(jù):

單價x(元)

18

19

20

21

22

銷量y(冊)

61

56

50

48

45

(1)求試銷5天的銷量的方差和yx的回歸直線方程;

(2)預計今后的銷售中,銷量與單價服從(1)中的回歸方程,已知每冊單元卷的成本是14元,

為了獲得最大利潤,該單元卷的單價應(yīng)定為多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx=x2﹣lnx

1)求曲線fx)在點(1,f1))處的切線方程;

2)求函數(shù)fx)的單調(diào)遞減區(qū)間:

3)設(shè)函數(shù)gx=fx﹣x2+ax,a0,若xOe]時,gx)的最小值是3,求實數(shù)a的值.(e為自然對數(shù)的底數(shù))

查看答案和解析>>

同步練習冊答案