【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,過點(diǎn)的直線的傾斜角為45°,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線和曲線的交點(diǎn)為點(diǎn).
(1)求直線的參數(shù)方程;
(2)求的值.
【答案】(1);(2).
【解析】
試題分析:(1)由于定點(diǎn)為,傾斜角為,根據(jù)直線參數(shù)方程的概念,有;(2)對方程兩邊乘以,化簡得,將直線的參數(shù)方程代入,寫出根與系數(shù)關(guān)系,理由難過參數(shù)的幾何意義有.
試題解析:
(1)由條件知,直線的傾斜角,
設(shè)點(diǎn)是直線上的任意一點(diǎn),點(diǎn)到點(diǎn)的有向距離為,則
....................5分
(2)曲線的直角坐標(biāo)方程為,由此得,
即,設(shè)為此方程的兩個(gè)根,因?yàn)?/span>和的交點(diǎn)為,所以分別是點(diǎn)所對應(yīng)的參數(shù),由韋達(dá)定理得................10分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),函數(shù).
(1)求函數(shù)的的單調(diào)遞增區(qū)間;
(2)設(shè),問是否存在極值, 若存在, 請求出極值; 若不存在, 請說明理由;
(3)設(shè)是函數(shù)圖象上任意不同的兩點(diǎn), 線段的中點(diǎn)為,直線的斜率為.證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】王昌齡《從軍行》兩句詩為“黃沙百戰(zhàn)穿金甲,不破樓蘭終不歸”,其中后一句中“攻破樓蘭”是“返回家鄉(xiāng)”的( )
A. 充分條件 B. 必要條件 C. 充要條件 D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年下學(xué)期某市教育局對某校高三文科數(shù)學(xué)進(jìn)行教學(xué)調(diào)研,從該校文科生中隨機(jī)抽取名學(xué)生的數(shù)學(xué)成績進(jìn)行統(tǒng)計(jì),將他們的成績分成六段后得到如圖所示的頻率分布直方圖.
(1)求這40名學(xué)生中數(shù)學(xué)成績不低于120分的學(xué)生人數(shù);
(2)若從數(shù)學(xué)成績內(nèi)的學(xué)生中任意抽取2人,求成績在中至少有一人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題
①空集沒有子集;
②任何集合至少有兩個(gè)子集;
③空集是任何集合的真子集;
④若A , 則A≠.
其中正確的個(gè)數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)國家號召,某地決定分批建設(shè)保障性住房供給社會(huì).首批計(jì)劃用100萬元購得一塊土地,該土地可以建造每層1 000平方米的樓房,樓房的每平方米建筑費(fèi)用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費(fèi)用提高20元.已知建筑第5層樓房時(shí),每平方米建筑費(fèi)用為800元.
(1)若建筑第x層樓時(shí),該樓房綜合費(fèi)用為y萬元(綜合費(fèi)用是建筑費(fèi)用與購地費(fèi)用之和),寫出y=f(x)的表達(dá)式;
(2)為了使該樓房每平方米的平均綜合費(fèi)用最低,應(yīng)把樓層建成幾層?此時(shí)平均綜合費(fèi)用為每平方米多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(常數(shù)).
(1)證明:當(dāng)時(shí),函數(shù)有且只有一個(gè)極值點(diǎn);
(2)若函數(shù)存在兩個(gè)極值點(diǎn),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 (x≥0)成等差數(shù)列.又?jǐn)?shù)列{an}(an>0)中,a1=3 ,此數(shù)列的前n項(xiàng)的和Sn(n∈N*)對所有大于1的正整數(shù)n都有Sn=f(Sn-1).
(1)求數(shù)列{an}的第n+1項(xiàng);
(2)若是,的等比中項(xiàng),且Tn為{bn}的前n項(xiàng)和,求Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一汽車店新進(jìn)三類轎車,每類轎車的數(shù)量如下表:
類別 | |||
數(shù)量 | 4 | 3 | 2 |
同一類轎車完全相同,現(xiàn)準(zhǔn)備提取一部分車去參加車展.
(1)從店中一次隨機(jī)提取2輛車,求提取的兩輛車為同一類型車的概率;
(2)若一次性提取4輛車,其中三種型號的車輛數(shù)分別記為,記為的最大值,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com