若a>b>c,則使
1
a-b
+
1
b-c
k
a-c
恒成立的最大的正整數(shù)k為( 。
A.2B.3C.4D.5
∵a>b>c,∴a-b>0,b-c>0,a-c>0,且a-c=a-b+b-c.
a-c
a-b
+
a-c
b-c
=
a-b+b-c
a-b
+
a-b+b-c
b-c
=2+
b-c
a-b
+
a-b
b-c
≥2+2=4
,
k ≤ 
a-c
a-b
+
a-c
b-c
,k≤4,
故k的最大整數(shù)為4,
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①若A、B、C、D是空間任意四點,則有
AB
+
BC
+
CD
+
DA
=
0

b
0
,則
a
b
共線的充要條件是:?λ∈R,使
a
b
;
③若
a
b
共線,則表示
a
b
的有向線段所在直線平行;
④對空間任意一點O與不共線的三點A、B、C,若
OP
=x
OA
+y
OB
+z
OC
(其中x、y、z∈R)且x+y+z=1,則P、A、B、C四點共面.
其中不正確命題的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:離心率e=
5
-1
2
的橢圓為“黃金橢圓”,已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的一個焦點為F(c,0)(c>0),P為橢圓E上的任意一點.
(1)試證:若a,b,c不是等比數(shù)列,則E一定不是“黃金橢圓”;
(2)沒E為黃金橢圓,問:是否存在過點F、P的直線l,使l與y軸的交點R滿足
RP
=-2
PF
?若存在,求直線l的斜率k;若不存在,請說明理由;
(3)已知橢圓E的短軸長是2,點S(0,2),求使
SP
2
取最大值時點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•西城區(qū)一模)已知集合Sn={X|X=(x1,x2,…,xn),xiN*,i=1,2,…,n} (n≥2).對于A=(a1,a2,…,an),B=(b1,b2,…,bn)∈Sn,定義
AB
=(b1-a1,b2-a2,…,bn-an)
;λ(a1,a2,…,an)=(λa1,λa2,…,λan)(λ∈R);A與B之間的距離為d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)當(dāng)n=5時,設(shè)A=(1,2,1,2,a5),B=(2,4,2,1,3).若d(A,B)=7,求a5
(Ⅱ)(。┳C明:若A,B,C∈Sn,且?λ>0,使
AB
BC
,則d(A,B)+d(B,C)=d(A,C);
(ⅱ)設(shè)A,B,C∈Sn,且d(A,B)+d(B,C)=d(A,C).是否一定?λ>0,使
AB
BC
?說明理由;
(Ⅲ)記I=(1,1,…,1)∈Sn.若A,B∈Sn,且d(I,A)=d(I,B)=p,求d(A,B)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•西城區(qū)一模)已知集合Sn={X|X=(x1,x2,…,xn),xiN*,i=1,2,…,n} (n≥2).對于A=(a1,a2,…,an),B=(b1,b2,…,bn)∈Sn,定義
AB
=(b1-a1,b2-a2,…,bn-an)
;λ(a1,a2,…,an)=(λa1,λa2,…,λan)(λ∈R);A與B之間的距離為d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)當(dāng)n=5時,設(shè)A=(1,2,1,2,5),B=(2,4,2,1,3),求d(A,B);
(Ⅱ)證明:若A,B,C∈Sn,且?λ>0,使
AB
BC
,則d(A,B)+d(B,C)=d(A,C);
(Ⅲ)記I=(1,1,…,1)∈S20.若A,B∈S20,且d(I,A)=d(I,B)=13,求d(A,B)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a>b>c,則使不等式
1
a-b
+
1
b-c
+
k
c-a
>0
恒成立的實數(shù)k的取值范圍是( 。
A、(-∞,1]
B、(-∞,1)
C、(-∞,4]
D、(-∞,4)

查看答案和解析>>

同步練習(xí)冊答案