【題目】如圖,某十字路口的花圃中央有一個底面半徑為的圓柱形花柱,四周斑馬線的內(nèi)側(cè)連線構(gòu)成邊長為的正方形.因工程需要,測量員將使用儀器沿斑馬線的內(nèi)側(cè)進行測量,其中儀器的移動速度為,儀器的移動速度為.若儀器與儀器的對視光線被花柱阻擋,則稱儀器在儀器的“盲區(qū)”中.

1)如圖,斑馬線的內(nèi)側(cè)連線構(gòu)成正方形,儀器在點處,儀器上距離點處,試判斷儀器是否在儀器的“盲區(qū)”中,并說明理由;

2)如圖,斑馬線的內(nèi)側(cè)連線構(gòu)成正方形,儀器從點出發(fā)向點移動,同時儀器從點出發(fā)向點移動,在這個移動過程中,儀器在儀器的“盲區(qū)”中的時長為多少?

【答案】1)是,理由見解析;(2.

【解析】

1)建立平面直角坐標(biāo)系,求得點的坐標(biāo),進而可得出直線的方程,求出原點到直線的距離,判斷直線與花柱所在圓的位置關(guān)系,由此可得出結(jié)論;

2)建立平面直角坐標(biāo)系,求出、、的坐標(biāo),假設(shè)儀器在儀器的“盲區(qū)”中的時長為,用表示點、的坐標(biāo),并求出直線的方程,利用圓心到直線的距離可得出關(guān)于的不等式,求出的取值范圍,由此可得出結(jié)果.

1)建立如圖所示的平面直角坐標(biāo)系,則,所以,

所以直線的方程是,即,

故圓心到直線的距離

所以圓與直線相交,故儀器在儀器的“盲區(qū)”中;

2)建立如圖所示的平面直角坐標(biāo)系,

,,,.

依題意知起始時刻儀器在儀器的“盲區(qū)”中.

假設(shè)儀器在儀器的“盲區(qū)”中的時長為,則,,

所以直線的斜率,

故直線的方程是,即

從而點到直線的距離,

整理得,解得,結(jié)合時間,得.

答:儀器在儀器的“盲區(qū)”中的時長為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體ABCDA1B1C1D1的棱長為a,線段B1D1上有兩個動點E,F,且EFa,以下結(jié)論正確的有(  )

A.ACBE

B.ABEF的距離為定值

C.三棱錐ABEF的體積是正方體ABCDA1B1C1D1體積的

D.異面直線AE,BF所成的角為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐PABC中,底面ABC,,,D,E分別是AC,PC的中點,FPB上一點,且MPA的中點,二面角的大小為45°.

1)證明:平面AEF

2)求直線AF與平面BCM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校對高一年級學(xué)生寒假參加社區(qū)服務(wù)的次數(shù)進行了統(tǒng)計,隨機抽取了名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻率分布統(tǒng)計表和頻率分布直方圖如下:

(1)求表中的值和頻率分布直方圖中的值,并根據(jù)頻率分布直方圖估計該校高一學(xué)生寒假參加社區(qū)服務(wù)次數(shù)的中位數(shù);

(2)如果用分層抽樣的方法從樣本服務(wù)次數(shù)在的人中共抽取6人,再從這6人中選2人,求2人服務(wù)次數(shù)都在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C)的離心率為,且過點.

1)求橢圓C的方程;

2)過坐標(biāo)原點的直線與橢圓交于M,N兩點,過點M作圓的一條切線,交橢圓于另一點P,連接,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】孫子定理是中國古代求解一次同余式組的方法,是數(shù)論中一個重要定理,最早可見于中國南北朝時期的數(shù)學(xué)著作《孫子算經(jīng)》,年英國來華傳教士偉烈亞力將其問題的解法傳至歐洲,年英國數(shù)學(xué)家馬西森指出此法符合年由高斯得出的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”.這個定理講的是一個關(guān)于整除的問題,現(xiàn)有這樣一個整除問題:將個整數(shù)中能被除余且被除余的數(shù)按由小到大的順序排成一列構(gòu)成一數(shù)列,則此數(shù)列的項數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解全市統(tǒng)考情況,從所有參加考試的考生中抽取4000名考生的成績,頻率分布直方圖如下圖所示.

(1)求這4000名考生的半均成績(同一組中數(shù)據(jù)用該組區(qū)間中點作代表);

2)由直方圖可認(rèn)為考生考試成績z服從正態(tài)分布,其中分別取考生的平均成績和考生成績的方差,那么抽取的4000名考生成績超過84.81分(含84.81分)的人數(shù)估計有多少人?

3)如果用抽取的考生成績的情況來估計全市考生的成績情況,現(xiàn)從全市考生中隨機抽取4名考生,記成績不超過84.81分的考生人數(shù)為,求.(精確到0.001

附:

,則

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合,設(shè)集合是集合的非空子集,中的最大元素和最小元素之差稱為集合的直徑. 那么集合所有直徑為的子集的元素個數(shù)之和為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若是單調(diào)遞增函數(shù),求實數(shù)a的取值范圍;

2)若恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案