11.在△ABC中,a,b,c分別為角A,B,C的對邊,且滿足4cos2$\frac{A}{2}$-cos2(B+C)=$\frac{7}{2}$,若a=2,則△ABC的面積的最大值是$\sqrt{3}$.

分析 利用三角形的內(nèi)角和,結(jié)合已知條件等式,可得關(guān)于A的三角方程,從而可以求得A的大小,利用余弦定理及基本不等式,可求得bc,從而可求△ABC的面積的最大值.

解答 (本題滿分為10分)
解:∵A+B+C=π,
∴4cos2$\frac{A}{2}$-cos2(B+C)=2(1+cosA)-cos2A=-2cos2A+2cosA+3=$\frac{7}{2}$,
∴2cos2A-2cosA+$\frac{1}{2}$=0.    …(4分)
∴cosA=$\frac{1}{2}$.
∵0<A<π,∴A=$\frac{π}{3}$°.…(6分)
∵a=2,由余弦定理可得:4=b2+c2-bc≥2bc-bc=bc,(當(dāng)且僅當(dāng)b=c=2,不等式等號成立).
∴bc≤4.
∴S△ABC=$\frac{1}{2}$bcsinA≤$\frac{1}{2}$×$4×\frac{\sqrt{3}}{2}$=$\sqrt{3}$.…(10分)
故答案為:$\sqrt{3}$.

點評 本題的考點是解三角形,主要考查三角形的內(nèi)角和,考查二倍角公式的運用,考查三角形的面積公式,基本不等式的運用,知識點多,計算需要細心,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象的相鄰兩條對稱軸的距離是$\frac{π}{2}$,當(dāng)x=$\frac{π}{6}$時取得最大值2.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)=f(x)-$\frac{6}{5}$的零點為x0,求$cos({\frac{π}{3}-2{x_0}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.一個總體的60個個體的編號為0,1,2,3,…,59,現(xiàn)采用系統(tǒng)抽樣的方法從中抽取一個容量為10的樣本,請根據(jù)編號被6除余數(shù)為3的方法取組樣本,則抽取的樣本最大的一個號碼為57.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如果測得(x,y)的四組數(shù)值分別是A(1,3),B(2,3.8),C(3,5.2),D(4,6),則y與x之間的線性回歸方程為( 。
A.$\widehat{y}$=1.04x+2B.$\widehat{y}$=1.04x+1.9C.$\widehat{y}$=1.05x+1.9D.$\widehat{y}$=1.9x+1.04

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知平行六面體ABCD-A1B1C1D1,底面ABCD是邊長為1的正方形,AA1=2,∠A1AB=∠A1AD=120°,則異面直線AC1與A1D所成角的余弦值為(  )
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{\sqrt{10}}}{5}$C.$\frac{\sqrt{15}}{5}$D.$\frac{{\sqrt{14}}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.寫出下列命題p的非p形式(否定)
(1)p:100既能被4整除又能被5整除
(2)p:三條直線兩兩相交
(3)p:一元二次方程至多有兩個解
(4)p:2<x≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,以原點為圓心,橢圓的短半軸長為半徑的圓與直線$\sqrt{7}$x-$\sqrt{5}$y+12=0相切.
(1)求橢圓C的方程;
(2)設(shè)A(-4,0),過點R(3,0)作與x軸不重合的直線l交橢圓C于P,Q兩點,連接AP,AQ分別交直線x=$\frac{16}{3}$于M,N兩點,若直線MR、NR的斜率分別為k1、k2,試問:k1k2是否為定值?若是,求出該定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列有關(guān)命題的敘述,
①若p∨q為真命題,則p∧q為真命題;
②“m>$\frac{1}{2}$”是$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{2m-1}$=1為橢圓的充分必要條件;
③“若x+y=0,則是x,y互為相反數(shù)”的逆命題為真命題;
④命題“若x2-3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2-3x=2≠0”.
其中錯誤的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.為了調(diào)查學(xué)生每天零花錢的數(shù)量(錢數(shù)取整數(shù)元),以便引導(dǎo)學(xué)生樹立正確的消費觀.樣本容量1000的頻率分布直方圖如圖所示,則樣本數(shù)據(jù)落在[6,14)內(nèi)的頻數(shù)為680.

查看答案和解析>>

同步練習(xí)冊答案