1.為了調(diào)查學(xué)生每天零花錢的數(shù)量(錢數(shù)取整數(shù)元),以便引導(dǎo)學(xué)生樹立正確的消費觀.樣本容量1000的頻率分布直方圖如圖所示,則樣本數(shù)據(jù)落在[6,14)內(nèi)的頻數(shù)為680.

分析 由頻率分布直方圖先求出x,再求出樣本數(shù)據(jù)落在[6,14)內(nèi)的頻率,由此能求出樣本數(shù)據(jù)落在[6,14)內(nèi)的頻數(shù).

解答 解:由頻率分布直方圖得:
4(0.02+0.03+0.08+x+0.03)=1,解得x=0.09,
樣本數(shù)據(jù)落在[6,14)內(nèi)的頻率為:4(0.08+0.09)=0.68,
∴樣本數(shù)據(jù)落在[6,14)內(nèi)的頻數(shù)為:1000×0.68=680.
故答案為:680.

點評 本題考查頻數(shù)的求法,是基礎(chǔ)題,解題時要認真審題,注意頻率分布直方圖的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,a,b,c分別為角A,B,C的對邊,且滿足4cos2$\frac{A}{2}$-cos2(B+C)=$\frac{7}{2}$,若a=2,則△ABC的面積的最大值是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)集合A={x|x2-5x-14<0},B={x|x>1,x∈N},則A∩B的元素的個數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=4sin(ωx+$\frac{π}{4}$)(ω>0)的最小正周期為π,設(shè)向量$\overrightarrow{a}$=(-1,f(x)),$\overrightarrow$=(f(-x),1),g(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求函數(shù)f(x)的遞增區(qū)間;
(2)求函數(shù)g(x)在區(qū)間[$\frac{π}{8}$,$\frac{π}{3}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.命題p:y=|sinx|是周期為π的周期函數(shù),命題q:y=sin|x|是偶函數(shù),則下列命題中為真命題的是( 。
A.p∧qB.(¬p)∧qC.(¬p)∨(¬q)D.p∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.cos350°cos40°-sin190°cos50°=( 。
A.$-\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=1nx-tx.
(1)若f(x)在(2,+∞)為增函數(shù),求t的取值范圍;
(2)討論函數(shù)f(x)的零點的個教.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.當(dāng)x=0時,函數(shù)f(x)=$\frac{1}{2}$(ex+e-x)取得極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.是否存在同時滿足下列條件的雙曲線,若存在,求出其方程;若不存在,說明理由.
(1)漸近線方程是x±2y=0;
(2)點A(5,0)到雙曲線上的動點P的距離的最小值為$\sqrt{6}$.

查看答案和解析>>

同步練習(xí)冊答案