函數(shù)y=f(x)(x∈R)有下列命題:
(1)在同一坐標(biāo)系中,y=f(x-1)與y=f(-x+1)的圖象關(guān)于直線x=-1對稱;
(2)若f(2-x)=f(x),則函數(shù)y=f(x)的圖象關(guān)于直線x=1對稱;
(3)若f(x-1)=f(x+1),則函數(shù)y=f(x)是周期函數(shù),且2是一個周期;
(4)若f(2-x)=-f(x),則函數(shù)y=f(x)的圖象關(guān)于(1,0)對稱.其中正確命題的序號是
(2)(3)(4)
(2)(3)(4)
分析:根據(jù)題意,依次分析4個命題:對于(1):y=f(x)的圖象與y=f(-x)的圖象關(guān)于y軸對稱,由圖象變化的規(guī)律分析如何由將y=f(x)得到f(x-1)的圖象,如何由y=f(-x)得到y(tǒng)=[-(x-1)]=f(-x+1)的圖象,進(jìn)而判斷可得(1)錯誤;對于(2):在f(2-x)=f(x)中,用換元法,令t=x-1,可得f(1-t)=f(1+t),分析可得(2)正確;對于(3):在f(x-1)=f(x+1)中,令t=x-1,有f(t)=f(t+2),由周期函數(shù)的定義,分析可得(3)正確;對于(4):在f(2-x)=-f(x)中,用換元法,令t=x-1,則f(1-t)=-f(1+t),分析可得,則(4)正確;綜合可得答案.
解答:解:根據(jù)題意,依次分析4個命題:
對于(1):y=f(x)的圖象與y=f(-x)的圖象關(guān)于y軸對稱,將y=f(x)向右平移一個單位得到f(x-1)的圖象,
將y=f(-x)的圖象向右平移一個單位得到y(tǒng)=[-(x-1)]=f(-x+1)的圖象,則在同一坐標(biāo)系中,y=f(x-1)與y=f(-x+1)的圖象關(guān)于直線x=1對稱,則(1)錯誤;
對于(2):在f(2-x)=f(x)中,令t=x-1,則f(1-t)=f(1+t),分析可得函數(shù)y=f(x)的圖象關(guān)于直線x=1對稱,則(2)正確;
對于(3):在f(x-1)=f(x+1)中,令t=x-1,有f(t)=f(t+2),則函數(shù)y=f(x)是周期函數(shù),且2是一個周期,(3)正確;
對于(4):在f(2-x)=-f(x)中,令t=x-1,則f(1-t)=-f(1+t),則函數(shù)y=f(x)的圖象關(guān)于(1,0)對稱,則(4)正確;
綜合可得,正確命題的序號是(2)、(3)、(4),
故答案為(2)、(3)、(4).
點評:本題考查抽象函數(shù)及其應(yīng)用,涉及抽象函數(shù)的對稱問題,關(guān)鍵掌握函數(shù)關(guān)于直線、點對稱的規(guī)律與判斷方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃埔區(qū)一模)對于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“P數(shù)對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“類P數(shù)對”.設(shè)函數(shù)f(x)的定義域為R+,且f(1)=3.
(1)若(1,1)是f(x)的一個“P數(shù)對”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個“P數(shù)對”,且當(dāng)x∈[1,2)時f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個“類P數(shù)對”,試比較下列各組中兩個式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選作題)定義在(-1,1)上的函數(shù)y=f(x)滿足:對任意x,y∈(-1,1)都有f(x)+f(y)=f(
x+y
1+xy
)

(1)判斷函數(shù)f(x)的奇偶性,并證明;
(2)如果當(dāng)x∈(-1,0)時,有f(x)>0,求證:f(x)在(-1,1)上是單調(diào)遞減函數(shù);
(3)在(2)的條件下解不等式:f(x+
1
2
)+f(
1
1-x
)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•順義區(qū)二模)對于定義域分別為M,N的函數(shù)y=f(x),y=g(x),規(guī)定:
函數(shù)h(x)=
f(x)•g(x),當(dāng)x∈M且x∈N
f(x),當(dāng)x∈M且x∉N
g(x),當(dāng)x∉M且x∈N

(1)若函數(shù)f(x)=
1
x+1
,g(x)=x2+2x+2,x∈R
,求函數(shù)h(x)的取值集合;
(2)若f(x)=1,g(x)=x2+2x+2,設(shè)bn為曲線y=h(x)在點(an,h(an))處切線的斜率;而{an}是等差數(shù)列,公差為1(n∈N*),點P1為直線l:2x-y+2=0與x軸的交點,點Pn的坐標(biāo)為(an,bn).求證:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5
;
(3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,2π],請問,是否存在一個定義域為R的函數(shù)y=f(x)及一個α的值,使得h(x)=cosx,若存在請寫出一個f(x)的解析式及一個α的值,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浦東新區(qū)二模)已知函數(shù)y=f(x),x∈D,如果對于定義域D內(nèi)的任意實數(shù)x,對于給定的非零常數(shù)m,總存在非零常數(shù)T,恒有f(x+T)>m•f(x)成立,則稱函數(shù)f(x)是D上的m級類增周期函數(shù),周期為T.若恒有f(x+T)=m•f(x)成立,則稱函數(shù)f(x)是D上的m級類周期函數(shù),周期為T.
(1)試判斷函數(shù)f(x)=log
12
(x-1)
是否為(3,+∞)上的周期為1的2級類增周期函數(shù)?并說明理由;
(2)已知函數(shù)f(x)=-x2+ax是[3,+∞)上的周期為1的2級類增周期函數(shù),求實數(shù)a的取值范圍;
(3)下面兩個問題可以任選一個問題作答,如果你選做了兩個,我們將按照問題(Ⅰ)給你記分.
(Ⅰ)已知T=1,y=f(x)是[0,+∞)上m級類周期函數(shù),且y=f(x)是[0,+∞)上的單調(diào)遞增函數(shù),當(dāng)x∈[0,1)時,f(x)=2x,求實數(shù)m的取值范圍.
(Ⅱ)已知當(dāng)x∈[0,4]時,函數(shù)f(x)=x2-4x,若f(x)是[0,+∞)上周期為4的m級類周期函數(shù),且y=f(x)的值域為一個閉區(qū)間,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•盧灣區(qū)一模)將奇函數(shù)的圖象關(guān)于原點(即(0,0))對稱這一性質(zhì)進(jìn)行拓廣,有下面的結(jié)論:
①函數(shù)y=f(x)滿足f(a+x)+f(a-x)=2b的充要條件是y=f(x)的圖象關(guān)于點(a,b)成中心對稱.
②函數(shù)y=f(x)滿足F(x)=f(x+a)-f(a)為奇函數(shù)的充要條件是y=f(x)的圖象關(guān)于點(a,f(a))成中心對稱(注:若a不屬于x的定義域時,則f(a)不存在).
利用上述結(jié)論完成下列各題:
(1)寫出函數(shù)f(x)=tanx的圖象的對稱中心的坐標(biāo),并加以證明.
(2)已知m(m≠-1)為實數(shù),試問函數(shù)f(x)=
x+m
x-1
的圖象是否關(guān)于某一點成中心對稱?若是,求出對稱中心的坐標(biāo)并說明理由;若不是,請說明理由.
(3)若函數(shù)f(x)=(x-
2
3
)(|x+t|+|x-3|)-4
的圖象關(guān)于點(
2
3
,f(
2
3
))
成中心對稱,求t的值.

查看答案和解析>>

同步練習(xí)冊答案