分析 由已知⇒cotC=tan∠BAD⇒C+∠BAD=$\frac{π}{2}$⇒sin∠BAD=cosC,又因?yàn)椤螧AD+C+∠CAD+B=π,故$∠CAD+B=\frac{π}{2}$⇒sin∠CAD=cosB,又$\frac{DB}{sin∠BAD}=\frac{AD}{sinB}$,$\frac{DC}{sin∠CAD}=\frac{AD}{sinC}$,得sinC•sin∠BAD=sinB•sin∠CAD⇒2B=2CB=C,即AB=AC.先在△ABE中利用余弦定理表示出cos∠BAC,進(jìn)而求得sin∠BAC的表達(dá)式,進(jìn)而代入三角形面積公式利用轉(zhuǎn)化為二次函數(shù)來解決.
解答 解:∵$\frac{\overrightarrow{CA}•\overrightarrow{CB}}{{S}_{△CAB}}$=4$\frac{{S}_{△ABD}}{\overrightarrow{AB}•\overrightarrow{AD}}$,∴$\frac{CA•CBcosC}{\frac{1}{2}CA•CBsinC}=4×\frac{\frac{1}{2}AB•ADsin∠BAD}{AB•ADcos∠BAD}$.
⇒cotC=tan∠BAD⇒C+∠BAD=$\frac{π}{2}$⇒sin∠BAD=cosC
又因?yàn)椤螧AD+C+∠CAD+B=π,∴$∠CAD+B=\frac{π}{2}$⇒sin∠CAD=cosB
在△ABD中,$\frac{DB}{sin∠BAD}=\frac{AD}{sinB}$,…①
在△ADC中,$\frac{DC}{sin∠CAD}=\frac{AD}{sinC}$,…②
∵DB=DC,結(jié)合①②得sinC•sin∠BAD=sinB•sin∠CAD
∴sinB•cosB=sinC•cosC⇒sin2B=sin2C⇒2B=2C或2B+2C=π.
∵△ABC是非直角△,∴B=C,即AB=AC.
∵2$\overrightarrow{BE}$=$\overrightarrow{BA}$+$\overrightarrow{BC}$,BE=2,則E為AC中點(diǎn).
設(shè)AB=2x,則AE=x,在△ABE中,cos∠BAC=$\frac{{4x}^{2}+{x}^{2}-4}{2•2x•x}=\frac{5}{4}-\frac{1}{{x}^{2}}$
sin∠BAC=$\sqrt{1-(\frac{5}{4}-\frac{1}{{x}^{2}})^{2}}=\sqrt{-\frac{9}{16}-\frac{1}{{x}^{4}}+\frac{5}{2{x}^{2}}}$
$\frac{1}{2}×(2x)^{2}×\sqrt{-\frac{9}{16}-\frac{1}{{x}^{4}}+\frac{5}{2{x}^{2}}}$=$\frac{1}{2}\sqrt{-9({x}^{2}-\frac{20}{9})^{2}+\frac{256}{9}}$$≤\frac{8}{3}$
故當(dāng)x=$\frac{2\sqrt{5}}{3}$時(shí),△ABC的面積的最大值為$\frac{8}{3}$.
故答案為:$\frac{8}{3}$.
點(diǎn)評 本題主要考查了向量數(shù)量積的運(yùn)算、余弦定理和正弦定理的運(yùn)用.解題過程中充分利用好等腰三角形這個(gè)條件,把表達(dá)式的未知量減到最少.屬于難題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
次數(shù) | 1 | 2 | 3 | 4 | 5 |
物理(x分) | 90 | 85 | 74 | 68 | 63 |
數(shù)學(xué)(y分) | 130 | 125 | 110 | 95 | 90 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com