7.若x,y滿足$\left\{\begin{array}{l}y≥0,\;\;\;\\ 2x-y≥0,\;\;\;\\ x+y-3≤0\end{array}\right.$則2x+y的最大值為6.

分析 由約束條件作出可行域,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

解答  解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分).
設(shè)z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當(dāng)直線y=-2x+z經(jīng)過點(diǎn)A時(shí),直線y=-2x+z的截距最大,
此時(shí)z最大,而A(3,0),
代入目標(biāo)函數(shù)z=2x+y得z=3×2+0=6.
即目標(biāo)函數(shù)z=2x+y的最大值為6.
故答案為:6.

點(diǎn)評 本題考查了簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知全集U=R,集合A={x|2x<1},B={x|x-2<0},則(∁UA)∩B=( 。
A.{x|x>2}B.{x|0≤x<2}C.{x|0<x≤2}D.{x|x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=-1+tcosα}\\{y=1+tsinα}\end{array}}\right.$(t為參數(shù)).以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=ρcosθ+2.
(Ⅰ)寫出直線l經(jīng)過的定點(diǎn)的直角坐標(biāo),并求曲線C的普通方程;
(Ⅱ)若$α=\frac{π}{4}$,求直線l的極坐標(biāo)方程,以及直線l與曲線C的交點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知四棱錐P-ABCD中,底面ABCD是直角梯形,∠ADC=90°,AB∥CD,AD=DC=$\frac{1}{2}$AB=$\sqrt{2}$,平面PBC⊥平面ABCD.
(1)求證:AC⊥PB;
(2)在側(cè)棱PA上是否存在一點(diǎn)M,使得DM∥平面PCB?若存在,試給出證明;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)$f(x)=2sin(ωx+φ)(ω>0,|φ|<\frac{π}{2})$的圖象如圖所示,則函數(shù)f(x)的解析式的值為( 。
A.$f(x)=2sin(2x+\frac{π}{6})$B.$f(x)=2sin(2x+\frac{π}{3})$C.$f(x)=2sin(x+\frac{π}{6})$D.$f(x)=2sin(x+\frac{π}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)f(x)=ln(1+ax)+bx,g(x)=f(x)-bx2
(Ⅰ)若a=1,b=-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若曲線y=g(x)在點(diǎn)(1,ln3)處的切線與直線11x-3y=0平行.
(i)  求a,b的值;
(ii)求實(shí)數(shù)k(k≤3)的取值范圍,使得g(x)>k(x2-x)對x∈(0,+∞)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的直觀圖為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知某四棱錐的三視圖如右圖所示,則該幾何體的體積為( 。
A.$\frac{{2\sqrt{3}}}{3}$B.$\frac{{4\sqrt{3}}}{3}$C.2D.$\frac{{5\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.一個(gè)高為2的三棱錐的三視圖如圖所示,其中俯視圖是一個(gè)腰長為2的等腰直角三角形,則該幾何體外接球的體積( 。
A.12πB.C.$4\sqrt{3}π$D.$\sqrt{3}π$

查看答案和解析>>

同步練習(xí)冊答案