17.已知全集U=R,集合A={x|2x<1},B={x|x-2<0},則(∁UA)∩B=(  )
A.{x|x>2}B.{x|0≤x<2}C.{x|0<x≤2}D.{x|x≤2}

分析 根據(jù)集合補集和交集的定義進行求解即可.

解答 解:A={x|2x<1}={x|x<0},B={x|x-2<0}={x|x<2},
UA={x|x≥0},
則(∁UA)∩B={x|0≤x<2},
故選:B

點評 本題主要考查集合的基本運算,根據(jù)條件求出集合的等價條件是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)全集R,A={x|2<x≤6},B={x|3<x<8},C={x|a-1<x<2a}.
(1)求∁R(A∩B);
(2)若B∩C=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,D是AC中點,延長AB至E,BE=AB,連接DE交BC于點F,則$\overrightarrow{AF}$=(  )
A.$\frac{2}{5}$$\overrightarrow{AB}$+$\frac{3}{5}$$\overrightarrow{AC}$B.$\frac{3}{5}$$\overrightarrow{AB}$+$\frac{2}{5}$$\overrightarrow{AC}$C.$\frac{3}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$D.$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.三棱錐A-BCD的所有棱長均為6,點P在AC上,且AP=2PC,過P作四面體的截面,使截面平行于直線AB和CD,則該截面的周長為(  )
A.16B.12C.10D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.語句p:曲線x2-2mx+y2-4y+2m+7=0表示圓;語句q:曲線$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{2m}$=1表示焦點在x軸上的橢圓,若p∨q為真命題,¬p為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某四棱錐的三視圖如圖所示,其俯視圖為等腰直角三角形,則該四棱錐的體積為(  )
A.$\frac{{2\sqrt{2}}}{3}$B.$\frac{4}{3}$C.$\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=ln(x-1)+ax2+x+1,g(x)=(x-1)ex+ax2,a∈R.
(Ⅰ)當(dāng)a=1時,求函數(shù)f(x)在點(2,f(2))處的切線方程;
(Ⅱ)若函數(shù)g(x)有兩個零點,試求a的取值范圍;
(Ⅲ)證明f(x)≤g(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=x+sin|x|,x∈[-π,π]的大致圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若x,y滿足$\left\{\begin{array}{l}y≥0,\;\;\;\\ 2x-y≥0,\;\;\;\\ x+y-3≤0\end{array}\right.$則2x+y的最大值為6.

查看答案和解析>>

同步練習(xí)冊答案