已知動點P(x,y)與兩個定點M(-1,0),N(1,0)的連線的斜率之積等于常數(shù)λ(λ≠0)
(1)求動點P的軌跡C的方程;
(2)試根據(jù)λ的取值情況討論軌跡C的形狀;
(3)當λ=2時,對于平面上的定點數(shù)學公式,試探究軌跡C上是否存在點P,使得∠EPF=120°,若存在,求出點P的坐標;若不存在,說明理由.

解、(1)由題設可知;PM,PN的斜率存在且不為0,
則由kPM•kPN=λ得:,即
所以動點P的軌跡C的方程為;
(2)討論如下:
①當λ>0時,軌跡C為中心在原點,焦點在x 軸上的雙曲線(除去頂點)
②當-1<λ<0時,軌跡C為中心在原點,焦點在x 軸上的橢圓(除去長軸兩個端點)
③當λ=-1時,軌跡C為以原點為圓心,1為半徑的圓(除去點(-1,0),(1,0))
④當λ<-1時,軌跡C為中心在原點,焦點在y軸上的橢圓(除去短軸兩個端點);
(3)當λ=2時,軌跡C的方程為,顯然定點E、F為其左右焦點.
假設存在這樣的點P,使得∠EPF=120°,記∠EPF=θ,
設PE=m,PF=n,EF=
那么在△EPF中:由|m-n|=2,得m2+n2-2mn=4,
,
兩式聯(lián)立得:2mn(1-cosθ)=8,所以=


再設P(xP,yP
又因為
所以代入橢圓的方程可得:
所以,所以滿足題意的點P有四個,坐標分別為:,,,
分析:(1)寫出過PM與PN的直線的斜率,直接利用斜率之積等于常數(shù)λ(λ≠0)求出動點P的軌跡C的方程;
(2)根據(jù)λ的不同取值,結合圓錐曲線的標準方程逐一討論軌跡C的形狀;
(3)當λ=2時,曲線C是焦點在x軸上的雙曲線,且判出E,F(xiàn)恰為雙曲線的兩個焦點,假設點P存在,結合正余弦定理,利用三角形PEF的面積相等求解P點的坐標.
點評:本題考查了軌跡方程,考查了直線和圓的位置關系,訓練了分類討論的數(shù)學思想方法,涉及圓錐曲線上的一點和圓錐曲線兩個焦點連線的問題,結合正余弦定理及圓錐曲線的定義進行求解是常用的方法,此題是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知動點P(x,y)到原點的距離的平方與它到直線l:x=m(m是常數(shù))的距離相等.
(1)求動點P的軌跡方程C;
(2)就m的不同取值討論方程C的圖形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動點P(x,y)滿足,
x2+y2-4x+6y+13
+
x2+y2+6x+4y+13
=
26
,則
y-1
x-3
取值范圍( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動點P(x,y)與兩定點M(-1,0),N(1,0)連線的斜率之積等于常數(shù)λ(λ≠0).
(I) 求動點P的軌跡C的方程;
(II) 試根據(jù)λ的取值情況討論軌跡C的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動點P(x,y)滿足
(x+2)2+y2
-
(x-2)2+y2
=2,則動點P的軌跡是
雙曲線的一支(右支)
雙曲線的一支(右支)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動點P(x,y)在橢圓C:
x2
25
+
y2
16
=1上,F(xiàn)為橢圓C的右焦點,若點M滿足|
MF
|=1且
MP
MF
=0,則|
PM
|的最小值為(  )
A、
3
B、3
C、
12
5
D、1

查看答案和解析>>

同步練習冊答案