精英家教網 > 高中數學 > 題目詳情
1.已知函數y=$\sqrt{x+1}$+lg(2-x)的定義域是集合M,集合N={x|x(x-3)<0}
(1)求M∪N;
(2)求(∁RM)∩N.

分析 求出函數y的定義域M,化簡集合N,(1)根據并集的定義計算即可;(2)根據補集與交集的定義計算即可.

解答 解:(1)函數y=$\sqrt{x+1}$+lg(2-x)的定義域為
M={x|$\left\{\begin{array}{l}{x+1≥0}\\{2-x>0}\end{array}\right.$}={x|-1≤x<2},
集合N={x|x(x-3)<0}={x|0<x<3};
(1)M∪N={x|-1≤x<3};
(2)∁RM={x|x<-1或x≥2},
∴(CRM)∩N={x|2≤x<3}.

點評 本題考查了集合的化簡與運算問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

11.已知m,n都是實數,m≠0,f(x)=|x-1|+|x-2|.
(Ⅰ)若f(x)>2,求實數x的取值范圍;
(Ⅱ)若|m+n|+|m-n|≥|m|f(x)對滿足條件的所有m,n都成立,求實數x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.設{an}是正項等比數列,且a5a6=10,則lga1+lga2+…+lga9+lga10=(  )
A.5B.1+lg5C.2D.10

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.命題p:0<x<1,命題q:x2<2x,命題p是 q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.即不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.(1)計算:(-$\frac{7}{8}$)0+8${\;}^{\frac{1}{3}}$+$\root{4}{(3-π)^{4}}$.
(2)化簡:log3$\sqrt{27}-{log_3}\sqrt{3}+lg25+lg4+ln({e^2})$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.若y=log56•log67•log78•log89•log910則有(  )
A.y∈(0,1)B.y∈(1,2 )C.y∈(2,3 )D.y=2

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.設命題p:不等式x-x2≤a對?x≥1恒成立,命題q:關于x的方程x2-ax+1=0在R上有解.
(1)若?p為假命題,求實數a的取值范圍;
(2)若“p∧q”為假命題,“p∨q”為真命題,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.不等式x(x-1)<0的解集為(  )
A.{x|x<0或x>1}B.{x|0<x<1}C.{x|x<-1或x>0}D.{x|-1<x<0}

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.已知函數g(x)=2ax2-4ax+2+2b(a>0),在區(qū)間[2,3]上有最大值8,有最小值2,設f(x)=$\frac{g(x)}{2x}$.
(1)求a,b的值;
(2)不等式f(2x)-k•2x≥0在x∈[-1,1]時恒成立,求實數k的取值范圍;
(3)若方程f(|ex-1|)+$k(\frac{2}{{|{e^x}-1|}}-3)$=0有三個不同的實數解,求實數k的取值范圍.

查看答案和解析>>

同步練習冊答案