【題目】設(shè)函數(shù) 在(t,10﹣t2)上有最大值,則實數(shù)t的取值范圍為(
A.
B.
C.[﹣2,1)
D.(﹣2,1)

【答案】C
【解析】解:由 ,得f′(x)=﹣x2+1, 由f′(x)=0,得x=±1.
當(dāng)x∈(﹣∞,﹣1)∪(1,+∞)時,f′(x)<0,
∴f(x)的減區(qū)間為(﹣∞,﹣1),(1,+∞);
當(dāng)x∈(﹣1,1)時,f′(x)>0,
∴f(x)的增區(qū)間為(﹣1,1).
∴x=1時,f(x)取得極大值,
要使函數(shù)f(x)= 在(t,10﹣t2)上有最大值,
,即
解得:﹣2≤t<1.
∴實數(shù)t的取值范圍為[﹣2,1).
故選:C.
【考點(diǎn)精析】通過靈活運(yùn)用函數(shù)的最大(小)值與導(dǎo)數(shù),掌握求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班制定了數(shù)學(xué)學(xué)習(xí)方案:星期一和星期日分別解決個數(shù)學(xué)問題,且從星期二開始,每天所解決問題的個數(shù)與前一天相比,要么“多一個”要么“持平”要么“少一個”,則在一周中每天所解決問題個數(shù)的不同方案共有( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中, .

(Ⅰ)證明: ;

(Ⅱ)平面 平面, ,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣a|+|2x﹣1|,a∈R.
(I)當(dāng)a=3時,求關(guān)于x的不等式f(x)≤6的解集;
(II)當(dāng)x∈R時,f(x)≥a2﹣a﹣13,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,棱長為1(單位:)的正方體木塊經(jīng)過適當(dāng)切割,得到幾何體,已知幾何體由兩個底面相同的正四棱錐組成,底面平行于正方體的下底面,且各頂點(diǎn)均在正方體的面上,則幾何體體積的取值范圍是________(單位:).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三特長班的一次月考數(shù)學(xué)成績的莖葉圖和頻率分布直方圖1都受到不同程度的損壞,但可見部分如圖2,據(jù)此解答如下問題:
(Ⅰ)求分?jǐn)?shù)在[70,80)之間的頻數(shù),并計算頻率分布直方圖中[70,80)間的矩形的高;
(Ⅱ)若要從分?jǐn)?shù)在[50,70)之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份在[50,60)之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人設(shè)計一項單人游戲,規(guī)則如下:先將一棋子放在如圖所示正方形(邊長為2個單位)的頂點(diǎn)處,然后通過擲骰子來確定棋子沿正方形的邊按逆時針方向行走的單位,如果擲出的點(diǎn)數(shù)為,則棋子就按逆時針方向行走個單位,一直循環(huán)下去.則某人拋擲三次骰子后棋子恰好又回到點(diǎn)處的所有不同走法共有( )

A. 22種 B. 24種 C. 25種 D. 27種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若橢圓上有一動點(diǎn)到橢圓的兩焦點(diǎn)的距離之和等于,到直線的最大距離為.

(Ⅰ)求橢圓的方程;

(Ⅱ)若過點(diǎn)的直線與橢圓交于不同兩點(diǎn)、,為坐標(biāo)原點(diǎn))且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果直線y=kx+1與圓x2+y2+kx+my﹣4=0交于M、N兩點(diǎn),且M、N關(guān)于直線x+y=0對稱,則不等式組:表示的平面區(qū)域的面積是( )
A.
B.
C.1
D.2

查看答案和解析>>

同步練習(xí)冊答案