【題目】如圖,棱長為1(單位:)的正方體木塊經(jīng)過適當切割,得到幾何體,已知幾何體由兩個底面相同的正四棱錐組成,底面平行于正方體的下底面,且各頂點均在正方體的面上,則幾何體體積的取值范圍是________(單位:).

【答案】

【解析】

根據(jù)圖形可知幾何體體積由正方形面積來決定,根據(jù)截面正方形可知當為四邊中點時,面積最;為正方形四個頂點時,面積最大,從而得到面積的取值范圍;利用棱錐的體積公式可求得幾何體的體積的取值范圍.

由題意知,幾何體中兩個正四棱錐的高均為,則幾何體體積取值范圍由正方形的面積來決定

底面平行于正方體底面,則可作所在截面的平面圖如下:

由正方形對稱性可知,當為四邊中點時,取最小值;當為正方形四個頂點時,取最大值;

;

幾何體體積:

本題正確結果:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,PA⊥平面ABCD,CDADBCAD.

(Ⅰ)求證:CDPD;

(Ⅱ)求證:BD⊥平面PAB;

(Ⅲ)在棱PD上是否存在點M,使CM∥平面PAB,若存在,確定點M的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校參加某項競賽僅有一個名額,結合平時訓練成績,甲、乙兩名學生進入最后選拔,學校為此設計了如下選拔方案:設計6道測試題,若這6道題中,甲能正確解答其中的4道,乙能正確解答每個題目的概率均為.假設甲、乙兩名學生解答每道測試題都相互獨立,互不影響,現(xiàn)甲、乙從這6道測試題中分別隨機抽取3題進行解答.

(1)求甲、乙兩名學生共答對2道測試題的概率;

(2)從數(shù)學期望和方差的角度分析,應選拔哪個學生代表學校參加競賽?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓經(jīng)過,,三點.

(1)求圓的標準方程;

(2)若過點N 的直線被圓截得的弦AB的長為,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)當時,討論的單調性;

(2)設,時,若對任意,存在使,求實數(shù)取值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù) 在(t,10﹣t2)上有最大值,則實數(shù)t的取值范圍為(
A.
B.
C.[﹣2,1)
D.(﹣2,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的短軸一個端點到右焦點F的距離為2,且過點
(1)求橢圓C的方程;
(2)設M,N為橢圓C上不同的兩點,A,B分別為橢圓C上的左右頂點,直線MN既不平行與坐標軸,也不過橢圓C的右焦點F,若∠AFM=∠BFN,求證:直線MN過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉軸旋轉,有下列結論:
①當直線AB與a成60°角時,AB與b成30°角;
②當直線AB與a成60°角時,AB與b成60°角;
③直線AB與a所成角的最小值為45°;
④直線AB與a所成角的最小值為60°;
其中正確的是(填寫所有正確結論的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)在,很多人都喜歡騎“共享單車”,但也有很多市民并不認可.為了調查人們對這種交通方式的認可度,某同學從交通擁堵不嚴重的A城市和交通擁堵嚴重的B城市分別隨機調查了20名市民,得到了一個市民是否認可的樣本,具體數(shù)據(jù)如下列聯(lián)表

附:,

根據(jù)表中的數(shù)據(jù),下列說法中,正確的是(

A. 沒有95% 以上的把握認為“是否認可與城市的擁堵情況有關”

B. 有99% 以上的把握認為“是否認可與城市的擁堵情況有關”

C. 可以在犯錯誤的概率不超過0.01的前提下認為“是否認可與城市的擁堵情況有關”

D. 可以在犯錯誤的概率不超過0.025的前提下認為“是否認可與城市的擁堵情況有關”

查看答案和解析>>

同步練習冊答案