【題目】已知關(guān)于x的函數(shù)y= (t∈R)的定義域?yàn)镈,存在區(qū)間[a,b]D,f(x)的值域也是[a,b].當(dāng)t變化時(shí),b﹣a的最大值= .
【答案】
【解析】解:關(guān)于x的函數(shù)y=f(x)= =(1﹣t)﹣ 的定義域?yàn)椋ī仭蓿?)∪(0,+∞),
且函數(shù)在(﹣∞,0)、(0,+∞)上都是增函數(shù).
故有a=f(a),且b=f(b),即 a= ,b= .
即 a2+(t﹣1)a+t2=0,且 b2+(t﹣1)b+t2=0,
故a、b是方程x2+(t﹣1)x+t2=0的兩個(gè)同號(hào)的實(shí)數(shù)根.
由判別式大于0,容易求得t∈(﹣1, ).
而當(dāng)t=0時(shí),函數(shù)為y=1,不滿足條件,故t∈(﹣1, )且t≠0.
由韋達(dá)定理可得b﹣a= = ,故當(dāng)t=﹣ 時(shí),b﹣a取得最大值為 ,
故答案為: .
由函數(shù)的單調(diào)性可得a=f(a),且b=f(b),故a、b是方程x2+(t﹣1)x+t2=0的兩個(gè)同號(hào)的實(shí)數(shù)根.由判別式大于0,容易求得t∈(﹣1, ).由韋達(dá)定理可得b﹣a= = ,利用二次函數(shù)的性質(zhì)求得b﹣a的最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,按其數(shù)學(xué)成績(均為整數(shù))分成六組后得到如右部分頻率分布直方圖,觀察圖中的信息,
回答下列問題:
(1)補(bǔ)全頻率分布直方圖;并估計(jì)本次考試的數(shù)學(xué)平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)用分層抽樣的方法在分?jǐn)?shù)段為的學(xué)生成績中抽取一個(gè)容量為6的樣本,再從這6個(gè)樣本中任取2人成績,求至多有1人成績?cè)诜謹(jǐn)?shù)段內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合M={x|0≤x≤2},N={y|0≤y≤2},給出如下四個(gè)圖形,其中能表示從集合M到集合N的函數(shù)關(guān)系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓: 和圓: .
(1)若直線過點(diǎn),且被圓截得的弦長為,求直線的方程;
(2)設(shè)為平面直角坐標(biāo)系上的點(diǎn),滿足:存在過點(diǎn)的無窮多對(duì)相互垂直的直線和,它們分別與圓和相交,且直線被圓截得的弦長與直線被圓截得的弦長相等,試求所有滿足條件的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:方程 表示焦點(diǎn)在y軸上的橢圓,命題q:關(guān)于x的方程x2+2mx+2m+3=0無實(shí)根,若“p∧q”為假命題,“p∨q”為真命題,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x/攝氏度 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y/顆 | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(Ⅰ)求選取的2組數(shù)據(jù)恰好是不相鄰2天的數(shù)據(jù)的概率;
(Ⅱ)若選取的是12月1日與12月5日的2組數(shù)據(jù),請(qǐng)根據(jù)12月2日至4日的數(shù)據(jù),求出關(guān)于的線性回歸方程,由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
附:參考格式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)y=x2﹣3x﹣4的定義域?yàn)閇0,m],值域?yàn)? ,則m的取值范圍是( )
A.(0,4]
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex(x2﹣bx)(b∈R)在區(qū)間[ ,2]上存在單調(diào)遞增區(qū)間,則實(shí)數(shù)b的取值范圍是( )
A.(﹣∞, )
B.(﹣∞, )
C.(﹣ , )
D.( ,+∞)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com