如圖,三棱錐A-BCD中DA,DB,DC兩兩垂直且長度都為1,則三棱錐的體積為________.


分析:用線面垂直的判定定理,證出AD⊥平面BCD,得到AD是三棱錐的高.然后求出直角三角形BCD的面積,再用錐體的體積公式,可得三棱錐A-BCD的體積.
解答:∵AD⊥BD,AD⊥CD,且BD、CD是平面BCD內(nèi)的相交直線
∴AD⊥平面BCD,可得AD是三棱錐的高
∵△BCD中,BD⊥CD,BD=CD=1
∴△BCD的面積為S△BCD=×1×1=
因此,三棱錐A-BCD的體積為V=×S△BCD×AD=××1=
故答案為:
點評:本題給出三棱錐有三條棱兩兩垂直,求三棱錐的體積,著重考查了線面垂直的判定定理和錐體體積公式等知識點,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,三棱錐A-BCD中,AB⊥底面BCD,BC⊥CD,且AB=BC=1,CD=2,點E為CD的中點,則AE的長為(  )
A、
2
B、
3
C、2
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱錐A-BCD,BC=3,BD=4,CD=5,AD⊥BC,E,F(xiàn)分別是棱AB,CD的中點,連接CE,G為CE上一點.
(1)GF∥平面ABD,求
CGGE
的值;
(2)求證:DE⊥BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱錐A-BCD的底面是等腰直角三角形,AB⊥平面BCD,AB=BC=BD=2,E是棱CD上的任意一點,F(xiàn)、G分別是AC、BC的中點,則在下面的命題中:①平面ABE⊥平面BCD;②平面EFG∥平面ABD;③四面體FECG的體積最大值是
1
3
,真命題的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•濱州一模)如圖,三棱錐A-BCD中,AD、BC、CD兩兩互相垂直,且AB=13,BC=3,CD=4,M、N分別為AB、AC的中點.
(1)求證:BC∥平面MND;
(2)求證:平面MND⊥平面ACD;
(3)求三棱錐A-MND的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,三棱錐A-BCD是正三棱錐,O為底面BCD的中心,以O(shè)為坐標(biāo)原點,分別以O(shè)D、OA為y、z軸建立如圖所示的空間直角坐標(biāo)系O-xyz,若|
OA
|=|
BC
|=12
,則線段AC的中點坐標(biāo)是
 

查看答案和解析>>

同步練習(xí)冊答案