已知圓O:(x-2)2+(y+4)2=2,點P是圓O上的一動點,則
x2+y2
的最大值是
 
; 
y
x
的最小值是
 
考點:圓的標(biāo)準(zhǔn)方程,兩點間距離公式的應(yīng)用
專題:直線與圓
分析:(1)首先求出圓心到原點的距離,進一步求出最大值.
(2)利用直線和圓相切求出最值,進一步求出最小值.
解答: 解:(1)已知圓O:(x-2)2+(y+4)2=2,
O(2,-4),R=
2

則:
x2+y2
的最大值:
(-2)2+42
+R
=2
5
+
2

(2)利用直線和圓的關(guān)系:設(shè)直線方程為:y=kx
則:當(dāng)直線與圓相切時:
|-4-2k|
1+k2
=
2

解得:k=-1或-7
所以:
y
x
的最小值為:-7

故答案為:2
5
+
2
-7
點評:本題考查的知識點:與圓有關(guān)的最值問題,直線與圓的位置關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(x,y)為∠α終邊上一點.
(1)若∠α是第二象限角,且y=
5
,且cosα=
2
4
,求x的值;
(2)若x=y,求sinα+2cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(如圖)正△ABC的邊長為3,D、E分別是BC邊上的三等分點,沿AD、AE折起,使B、C兩點重合于點P,則下列結(jié)論:
①AP⊥DE;
②AP與面PDE所成角的正弦值是
6
3
;
③P到平面ADE的距離為
6
3

④AP與底面ADE所成角的余弦值為
6
9

其中正確結(jié)論的序號為
 
(把你認(rèn)為正確的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,a,b,c分別是內(nèi)角A,B,C對邊,且a2=bc.
(1)當(dāng)a=4,
b
c
=
cosB
cosC
,求△ABC的面積;
(2)若A=
π
3
,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個正實數(shù)x,y滿足
2
x
+
1
y
=1,并且x+2y≥m2-2m恒成立,則實數(shù)m的取值范圍是( 。
A、(-2,4)
B、[-2,4]
C、(-∞,-2)∪(4,+∞)
D、(-∞,-2]∪[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,四邊形ABCD是矩形,P∉平面ABCD,過BC作平面BCFE交AP于E,交DP于F.
求證:四邊形BCFE是梯形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點分別為F1、F2,點M在雙曲線的左支上,且|MF2|=7|MF1|,則此雙曲線離心率的最大值為(  )
A、
4
3
B、
5
3
C、2
D、
7
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

假設(shè)某種設(shè)備使用的年限x(年)與所支出的維修費用y(元)有以下統(tǒng)計資料:
使用年限x23456
維修費用y2.23.85.56.57.0
(已知回歸直線方程是:
y
=bx+a,其中b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
)由資料知y對x呈線性相關(guān)關(guān)系.試求:
(1)求
.
x
,
.
y
 及線性回歸方程
y
=bx+a;
(2)估計使用10年時,維修費用是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2sin
x
2
cos(
x
2
+
π
6
)+
1
2
的最大值為
 

查看答案和解析>>

同步練習(xí)冊答案