已知函數(shù)是奇函數(shù),是偶函數(shù)。
(1)求的值;
(2)設(shè)對(duì)任意恒成立,求實(shí)數(shù)的取值范圍。

(1)
(2)

解析試題分析:解:(1)由于為奇函數(shù),且定義域?yàn)镽,
,即,   23分
由于,

是偶函數(shù),,得到,
所以:;    4分
(2),,6分
在區(qū)間上是增函數(shù),所以當(dāng)時(shí),  9分
由題意得到,
的取值范圍是:。    12分
考點(diǎn):函數(shù)單調(diào)性以及函數(shù)奇偶性
點(diǎn)評(píng):主要是考查了函數(shù)奇偶性和單調(diào)性的運(yùn)用,屬于中檔題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(Ⅰ)已知函數(shù),若存在,使得,則稱(chēng)是函數(shù)的一個(gè)不動(dòng)點(diǎn),設(shè)二次函數(shù).
(Ⅰ) 當(dāng)時(shí),求函數(shù)的不動(dòng)點(diǎn);
(Ⅱ) 若對(duì)于任意實(shí)數(shù),函數(shù)恒有兩個(gè)不同的不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅲ) 在(Ⅱ)的條件下,若函數(shù)的圖象上兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動(dòng)點(diǎn),且直線(xiàn)是線(xiàn)段的垂直平分線(xiàn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(1) 試問(wèn)函數(shù)f(x)能否在x= 時(shí)取得極值?說(shuō)明理由;
(2) 若a= ,當(dāng)x∈[,4]時(shí),函數(shù)f(x)與g(x)的圖像有兩個(gè)公共點(diǎn),求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的房頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元,該建筑物每年的能源消耗費(fèi)用為C(單位:萬(wàn)元)與隔熱層厚度x(單位:cm)滿(mǎn)足關(guān)系:C(x)=(0x10),若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元。設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和。
(1)求k的值及f(x)的表達(dá)式;
(2)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某單位決定投資3200元建一倉(cāng)庫(kù)(長(zhǎng)方體狀),高度恒定,它的后墻利用舊墻,地面利用原地面均不花錢(qián),正面用鐵柵,每米長(zhǎng)造價(jià)40元,兩側(cè)墻砌磚,每米長(zhǎng)造價(jià)45元,屋頂每平方米造價(jià)20元.
(1)倉(cāng)庫(kù)面積的最大允許值是多少?
(2)為使面積達(dá)到最大而實(shí)際投入又不超過(guò)預(yù)算,正面鐵柵應(yīng)設(shè)計(jì)為多長(zhǎng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

作為紹興市2013年5.1勞動(dòng)節(jié)系列活動(dòng)之一的花卉展在鏡湖濕地公園舉行.現(xiàn)有一占地1800平方米的矩形地塊,中間三個(gè)矩形設(shè)計(jì)為花圃(如圖),種植有不同品種的觀賞花卉,周?chē)鷦t均是寬為1米的賞花小徑,設(shè)花圃占地面積為平方米,矩形一邊的長(zhǎng)為米(如圖所示)

(1)試將表示為的函數(shù);
(2)問(wèn)應(yīng)該如何設(shè)計(jì)矩形地塊的邊長(zhǎng),使花圃占地面積取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

若二次函數(shù)f(x)=ax2+bx+c(a≠0)滿(mǎn)足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)若在區(qū)間[-1,1]上,不等式f(x)>2x+m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某工廠(chǎng)生產(chǎn)一種產(chǎn)品的原材料費(fèi)為每件40元,若用x表示該廠(chǎng)生產(chǎn)這種產(chǎn)品的總件數(shù),則電力與機(jī)器保養(yǎng)等費(fèi)用為每件0.05x元,又該廠(chǎng)職工工資固定支出12500元。
(1)把每件產(chǎn)品的成本費(fèi)P(x)(元)表示成產(chǎn)品件數(shù)x的函數(shù),并求每件產(chǎn)品的最低成本費(fèi);
(2)如果該廠(chǎng)生產(chǎn)的這種產(chǎn)品的數(shù)量x不超過(guò)3000件,且產(chǎn)品能全部銷(xiāo)售,根據(jù)市場(chǎng)調(diào)查:每件產(chǎn)品的銷(xiāo)售價(jià)Q(x)與產(chǎn)品件數(shù)x有如下關(guān)系:,試問(wèn)生產(chǎn)多少件產(chǎn)品,總利潤(rùn)最高?(總利潤(rùn)=總銷(xiāo)售額-總的成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)是定義域?yàn)镽上的奇函數(shù).
(1)求的值,并證明當(dāng)時(shí),函數(shù)是R上的增函數(shù);
(2)已知,函數(shù),求的值域;
(3)若,試問(wèn)是否存在正整數(shù),使得對(duì)恒成立?若存在,請(qǐng)求出所有的正整數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案