【題目】已知函數(shù),在處的切線方程為.
(1)求的值
(2)當(dāng)且時(shí),求證: .
【答案】(1);(2)見解析
【解析】試題分析:先從切線方程中找到的值,構(gòu)建方程組得參數(shù)的值.(2)中的不等式較為麻煩,可以根據(jù)(1)的提示,考慮與之間的關(guān)系,然后再考慮與的關(guān)系,兩者均需通過(guò)合理變形構(gòu)建新函數(shù)并利用導(dǎo)數(shù)去考慮.
解析:(1),因在處的切線為,故,解得.
(2),令,則.
當(dāng)時(shí), , 在是減函數(shù);
當(dāng)時(shí), , 在是增函數(shù);
所以,故在上恒成立,也就是在上恒成立,整理得到, 恒成立.故當(dāng)且僅當(dāng)等號(hào)成立.所以當(dāng)且時(shí), .
令, , ,故在上總成立, 在上為增函數(shù),又,所以
當(dāng)時(shí), , 在上恒成立, ,故 ;
當(dāng)時(shí), , 在上恒成立, ,故也有;
綜上當(dāng)時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C,所對(duì)的邊分別為a,b,c.已知sinA+sinC=psinB(p∈R).且ac= b2 .
(Ⅰ)當(dāng)p= ,b=1時(shí),求a,c的值;
(Ⅱ)若角B為銳角,求p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.
(Ⅰ)證明:AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C與平面BB1C1C所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)列{an}中,an>0,a1= ,如果an+1是1與 的等比中項(xiàng),那么a1+ + + +… 的值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)是否存在正整數(shù),使得在上恒成立?若存在,求出的最大值并給出推導(dǎo)過(guò)程,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,已知a=1,b=2,cosC=
(1)求△ABC的周長(zhǎng);
(2)求cos(A﹣C)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答
(1)解不等式 <0.
(2)若關(guān)于不等式x2﹣4ax+4a2+a≤0的解集為,則實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)當(dāng)時(shí),求證: ;
(2)當(dāng)時(shí),試討論方程的解的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定點(diǎn),定直線: ,動(dòng)圓過(guò)點(diǎn),且與直線相切.
(Ⅰ)求動(dòng)圓的圓心軌跡的方程;
(Ⅱ)過(guò)點(diǎn)的直線與曲線相交于, 兩點(diǎn),分別過(guò)點(diǎn), 作曲線的切線, ,兩條切線相交于點(diǎn),求外接圓面積的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com