【題目】如圖,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.
(Ⅰ)證明:AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C與平面BB1C1C所成角的正弦值.
【答案】(Ⅰ)證明:取AB中點(diǎn),連接OC,OA1 ,
∵CA=CB,AB=A1A,∠BAA1=60°
∴OC⊥AB,OA1⊥AB,
∵OC∩OA1=O,
∴AB⊥平面OCA1 ,
∵CA1平面OCA1 ,
∴AB⊥A1C;
(Ⅱ)解:由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交線為AB,
所以O(shè)C⊥平面AA1B1B,故OA,OA1 , OC兩兩垂直.
以O(shè)為坐標(biāo)原點(diǎn), 的方向?yàn)閤軸的正向,建立如圖所示的坐標(biāo)系,
可得A(1,0,0),A1(0, ,0),C(0,0, ),B(﹣1,0,0),
則 =(1,0, ), = =(﹣1, ,0), =(0,﹣ , ),
設(shè) =(x,y,z)為平面BB1C1C的法向量,
則 ,
可取y=1,可得 =( ,1,﹣1),故cos< , >=﹣ ,
又因?yàn)橹本與法向量的余弦值的絕對(duì)值等于直線與平面的正弦值,
故直線A1C與平面BB1C1C所成角的正弦值為:﹣ .
【解析】(Ⅰ)取AB中點(diǎn),連接OC,OA1 , 得出OC⊥AB,OA1⊥AB,運(yùn)用AB⊥平面OCA1 , 即可證明.(Ⅱ)易證OA,OA1 , OC兩兩垂直.以O(shè)為坐標(biāo)原點(diǎn), 的方向?yàn)閤軸的正向建立坐標(biāo)系,可向量的坐標(biāo),求出平面BB1C1C的法向量,代入向量夾角公式,可得答案.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解空間直線與直線之間的位置關(guān)系的相關(guān)知識(shí),掌握相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線:同一平面內(nèi),沒有公共點(diǎn);異面直線: 不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn),以及對(duì)空間角的異面直線所成的角的理解,了解已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校有體育特長(zhǎng)生25人,美術(shù)特長(zhǎng)生35人,音樂特長(zhǎng)生40人.用分層抽樣的方法從中抽取40人,則抽取的體育特長(zhǎng)生、美術(shù)特長(zhǎng)生、音樂特長(zhǎng)生的人數(shù)分別為( 。
A.8,14,18
B.9,13,18
C.10,14,16
D.9,14,17
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)()
(Ⅰ)當(dāng)時(shí),求在處的切線方程;
(Ⅱ)求單調(diào)區(qū)間;
(Ⅲ)若圖象與軸關(guān)于, 兩點(diǎn),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的離心率為 ,其左頂點(diǎn)A在圓O:x2+y2=16上.
(1)求橢圓W的方程;
(2)若點(diǎn)P為橢圓W上不同于點(diǎn)A的點(diǎn),直線AP與圓O的另一個(gè)交點(diǎn)為Q.是否存在點(diǎn)P,使得 ?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人在靜水中游泳,速度為4公里/小時(shí),他在水流速度為4公里/小時(shí)的河中游泳.
(1)若他垂直游向河對(duì)岸,則他實(shí)際沿什么方向前進(jìn)?實(shí)際前進(jìn)的速度為多少?
(2)他必須朝哪個(gè)方向游,才能沿與水流垂直的方向前進(jìn)?實(shí)際前進(jìn)的速度為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正數(shù)數(shù)列{an}的前n項(xiàng)和為Sn , 已知對(duì)于任意的n∈Z+ , 均有Sn與1正的等比中項(xiàng)等于an與1的等差中項(xiàng).
(1)試求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= ,數(shù)列{bn}的前n項(xiàng)和為Tn , 求證:Tn< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,A為C上異于原點(diǎn)的任意一點(diǎn),過點(diǎn)A的直線l交C于另一點(diǎn)B,交x軸的正半軸于點(diǎn)D,且有丨FA丨=丨FD丨.當(dāng)點(diǎn)A的橫坐標(biāo)為3時(shí),△ADF為正三角形.
(1)求C的方程;
(2)若直線l1∥l,且l1和C有且只有一個(gè)公共點(diǎn)E,
(。┳C明直線AE過定點(diǎn),并求出定點(diǎn)坐標(biāo);
(ⅱ)△ABE的面積是否存在最小值?若存在,請(qǐng)求出最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)l,m是兩條不同的直線,α是一個(gè)平面,則下列命題正確的是( )
A.若l⊥m,mα,則l⊥α
B.若l⊥α,l∥m,則m⊥α
C.若l∥α,mα,則l∥m
D.若l∥α,m∥α,則l∥m
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com