6.已知函數(shù)$f(x)=\frac{1}{{{2^x}+1}}-\frac{1}{2}$.
(1)求證:函數(shù)f(x)是R上的奇函數(shù);
(2)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.

分析 (1)求出f(-x)并化簡,比較f(-x)與f(x)的關(guān)系;
(2)根據(jù)f(x)的單調(diào)性得出t2-2t與2t2-k的關(guān)系,采用分離參數(shù)法得出k與t的關(guān)系,

解答 解:(1)f(x)的定義域是R,f(-x)=$\frac{1}{{2}^{-x}+1}-\frac{1}{2}$=$\frac{{2}^{x}}{1+{2}^{x}}-\frac{1}{2}$.
∴f(-x)+f(x)=$\frac{{2}^{x}}{1+{2}^{x}}-\frac{1}{2}$+$\frac{1}{{2}^{x}+1}-\frac{1}{2}$=$\frac{{2}^{x}+1}{1+{2}^{x}}-1$=0.
∴f(-x)=-f(x).
∴f(x)是R上的奇函數(shù).
(2)∵y=2x在R上是增函數(shù),∴$f(x)=\frac{1}{{{2^x}+1}}-\frac{1}{2}$在R上是減函數(shù).
∵f(t2-2t)+f(2t2-k)<0,∴f(t2-2t)<-f(2t2-k)=f(k-2t2).
∴t2-2t>k-2t2,即k<3t2-2t.
令g(t)=3t2-2t=3(t-$\frac{1}{3}$)2-$\frac{1}{3}$,則g(t)的最小值為-$\frac{1}{3}$.
∴k<-$\frac{1}{3}$.∴k的取值范圍是(-∞,-$\frac{1}{3}$).

點(diǎn)評 本題考查了函數(shù)奇偶性的判斷,函數(shù)單調(diào)性的應(yīng)用,二次函數(shù)的最值,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(x)是定義在R上的偶函數(shù),對任意x∈R都有f(x+4)=f(x)+2f(2),且f(0)=3,則f(-8)的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.定義域?yàn)镽的偶函數(shù)f(x)滿足對?x∈R,有f(x+2)=f(x)-f(1),且當(dāng)x∈[2,3]時(shí),f(x)=-2x2+12x-18,若函數(shù)y=f(x)-loga(|x|+1)至少有6個(gè)零點(diǎn),則a的取值范圍是( 。
A.(0,$\frac{\sqrt{2}}{2}$)B.(0,$\frac{\sqrt{3}}{3}$)C.(0,$\frac{\sqrt{5}}{5}$)D.(0,$\frac{\sqrt{6}}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$都是單位向量,且向量$\overrightarrow{a}$、$\overrightarrow$的夾角為60°,若$\overrightarrow{c}$=2x$\overrightarrow{a}$+y$\overrightarrow$(x,y∈R),則xy的最大值為$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)各項(xiàng)均為正數(shù)的數(shù){an}的n項(xiàng)和Sn,滿4Sn=a2n+1-4n-1,n∈N+a2,a5,a14構(gòu)成等比數(shù)列.
(1)證明a2=$\sqrt{4{a}_{1}+5}$;  
(2)求數(shù){an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)記函數(shù)φ(x)=ax2-2x+1+ln(x+1)的圖象為C,l為曲線C在點(diǎn)P(0,1)的切線,若存在a≥$\frac{1}{2}$,使直線l與曲線C有且僅有一個(gè)公共點(diǎn),求滿足條件的所有a的值;
(2)判斷xsinx=1(x∈(0,5))實(shí)根的個(gè)數(shù);
(3)完成填空
用方程表述用函數(shù)零點(diǎn)表述
若函數(shù)y=f(x)和y=g(x)的圖象在(a,b)內(nèi)有交點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)不等式組$\left\{{\begin{array}{l}{0≤x≤2}\\{0≤y≤2}\end{array}}\right.$表示的平面區(qū)域?yàn)镈,在區(qū)域D內(nèi)隨即取一點(diǎn),則此點(diǎn)到坐標(biāo)原點(diǎn)的距離小于或等于2的概率是$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=-$\frac{1}{x}$+cos(2x+$\frac{2π}{3}$)的一個(gè)零點(diǎn)所在的區(qū)間可以是( 。
A.(0,$\frac{π}{2}$)B.($\frac{π}{2},\frac{2π}{3}$)C.($π,\frac{7π}{6}$)D.($\frac{4π}{3},\frac{7π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)數(shù)列{an}的前n項(xiàng)和為${S_n}={n^2}$,數(shù)列{bn}為等比數(shù)列,且${a_1}=2{b_1},{\;}^{\;}{b_1}{b_2}=\frac{1}{8}$.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)${c_n}=\frac{a_n}{b_n}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案